Help ?

IGMIN: We're glad you're here. Please click 'create a new query' if you are a new visitor to our website and need further information from us.

If you are already a member of our network and need to keep track of any developments regarding a question you have already submitted, click 'take me to my Query.'

Search

Organised by  IgMin Fevicon

Regional sites

Browse by Subjects

Welcome to IgMin Research – an Open Access journal uniting Biology, Medicine, and Engineering. We’re dedicated to advancing global knowledge and fostering collaboration across scientific fields.

Browse by Sections

At IgMin Research, we bridge the frontiers of Biology, Medicine, and Engineering to foster interdisciplinary innovation. Our expanded scope now embraces a wide spectrum of scientific disciplines, empowering global researchers to explore, contribute, and collaborate through open access.

Members

We focus on accelerating knowledge through shared interdisciplinary collaboration.

Articles

We focus on accelerating knowledge through shared interdisciplinary collaboration.

Explore Content

We focus on accelerating knowledge through shared interdisciplinary collaboration.

Identify Us

We focus on accelerating knowledge through shared interdisciplinary collaboration.

IgMin Corporation

Welcome to IgMin, a leading platform dedicated to enhancing knowledge dissemination and professional growth across multiple fields of science, technology, and the humanities. We believe in the power of open access, collaboration, and innovation. Our goal is to provide individuals and organizations with the tools they need to succeed in the global knowledge economy.

Publications Support
[email protected]
E-Books Support
[email protected]
Webinars & Conferences Support
[email protected]
Content Writing Support
[email protected]
IT Support
[email protected]

Search

Select Language

Explore Section

Content for the explore section slider goes here.

Abstract

Abstract at IgMin Research

We focus on accelerating knowledge through shared interdisciplinary collaboration.

Medicine Group Literature Review Article ID: igmin310

Engineered Escherichia coli Strains as Therapeutic Agents in Reactive Oxygen Species (ROS)-Mediated Glioblastoma Treatment: A Systematic Review of Mechanisms, Efficacy and Challenges

Cardiology Oncology DOI10.61927/igmin310 Affiliation

Affiliation

    American Institute of Medical Sciences, Jamaica

26
VIEWS
12
DOWNLOADS
Connect with Us

Abstract

Glioblastoma multiforme (GBM) remains one of the most aggressive and treatment-resistant brain tumors, characterized by a hostile microenvironment and poor prognosis. Recent advances in synthetic biology have led to the engineering of Escherichia coli (E. coli) strains as living therapeutics capable of targeting GBM via Reactive Oxygen Species (ROS)-mediated mechanisms. This systematic review evaluates the mechanisms by which engineered E. coli modulate ROS, their therapeutic efficacy in preclinical models, and challenges in delivery, safety, and regulation. Engineered strains show promise through prodrug conversion, direct ROS production, and immune activation, especially when combined with nanocarriers and immune checkpoint inhibitors. However, tumor heterogeneity, biosafety concerns, and regulatory complexities remain significant hurdles. Advancing toward clinical translation will require robust biocontainment systems, adaptable genetic circuits, and validation in humanized preclinical models.

Figures

References

    1. Lim M, Xia Y, Bettegowda C, Weller M. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 2018 Jul;15(7):422-442. doi: 10.1038/s41571-018-0003-5. PMID: 29643471.
    2. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005 Mar 10;352(10):987-96. doi: 10.1056/NEJMoa043330. PMID: 15758009.
    3. Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2015-2019. Neuro Oncol. 2022 Oct 5;24(Suppl 5):v1-v95. doi: 10.1093/neuonc/noac202. PMID: 36196752; PMCID: PMC9533228.
    4. Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006 Jan;7(1):41-53. doi: 10.1038/nrn1824. PMID: 16371949.
    5. Guan X, Wang C, Zhang L, Zhang Y. Reactive oxygen species in glioblastoma: From pathophysiology to therapeutic strategy. Front Oncol. 2023;13:1184627.
    6. Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative Stress in Cancer. Cancer Cell. 2020 Aug 10;38(2):167-197. doi: 10.1016/j.ccell.2020.06.001. Epub 2020 Jul 9. PMID: 32649885; PMCID: PMC7439808.
    7. Din MO, Danino T, Prindle A, Skalak M, Selimkhanov J, Allen K, Julio E, Atolia E, Tsimring LS, Bhatia SN, Hasty J. Synchronized cycles of bacterial lysis for in vivo delivery. Nature. 2016 Aug 4;536(7614):81-85. doi: 10.1038/nature18930. Epub 2016 Jul 20. PMID: 27437587; PMCID: PMC5048415.
    8. Chowdhury S, Castro S, Coker C, Hinchliffe TE, Arpaia N, Danino T. Programmable bacteria induce durable tumor regression and systemic antitumor immunity. Nat Med. 2019 Jul;25(7):1057-1063. doi: 10.1038/s41591-019-0498-z. Epub 2019 Jul 3. PMID: 31270504; PMCID: PMC6688650.
    9. Zhao J, Liu H, Zhang L, Yang C. Hypoxia-responsive bacterial therapy for glioblastoma. Nat Commun. 2023;14:1723.
    10. Chen Y, Liu X, Zhang C, Zhao T, Xu H, Li F. Synthetic biology-engineered Escherichia coli for targeted glioblastoma therapy via ROS-mediated mechanisms. Nat Biomed Eng. 2022;6(9):1035–1048.
    11. Wang H, Yu C, Gao X, Guo L. Oxidative stress-mediated glioblastoma therapy: Advances and challenges. Cell Death Dis. 2022;13:533.
    12. Guan Y, Wang C, Luo L. ROS-mediated therapies in glioblastoma: Molecular targets and delivery strategies. Cell Mol Life Sci. 2023;80:56.
    13. Chen Y, Wang H, Xu Y, Li R. Engineered Escherichia coli for tumor-targeted prodrug therapy in glioblastoma. Nat Biomed Eng. 2022;6(12):1407–1419.
    14. Wang Z, Liu Q, Ren J. Programmable probiotic therapy with ROS-inducing bacteria for glioblastoma immunotherapy. ACS Nano. 2022;16(12):19132–19145.
    15. Li Y, Zhang J, Wang X, Sun Q. Engineered microbial systems for redox-based cancer therapy. Adv Drug Deliv Rev. 2024;199:115071.
    16. Xu Y, Li R, Chen Y, Zhao L. Engineered bacteria synergize with immune checkpoint inhibitors for glioblastoma treatment. Nat Commun. 2023;14:6459.
    17. Zhao T, Liu B, Sun W. Bioengineered E. coli for ROS delivery: Tumor specificity via hypoxia promoters and quorum circuits. J Control Release. 2023;356:572–583.
    18. Li F, Zhang H, Yang M. Engineered bacterial carriers for ROS-based synergistic glioblastoma therapy and immune modulation. Adv Drug Deliv Rev. 2024;199:114982.
    19. Hambardzumyan D, Bergers G. Glioblastoma: Defining Tumor Niches. Trends Cancer. 2015 Dec;1(4):252-265. doi: 10.1016/j.trecan.2015.10.009. PMID: 27088132; PMCID: PMC4831073.
    20. Quail DF, Joyce JA. The Microenvironmental Landscape of Brain Tumors. Cancer Cell. 2017 Mar 13;31(3):326-341. doi: 10.1016/j.ccell.2017.02.009. PMID: 28292436; PMCID: PMC5424263.
    21. Meng F, Evans CW, Bhati M, Danino T. Hypoxia-inducible bacterial therapies for precision oncology. Nat Biomed Eng. 2022;6(8):932–946.
    22. Kroemer G, Galassi C, Zitvogel L, Galluzzi L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2022;40:17–36.
    23. Choi J, Yang H, Kim E, Kim J. Synthetic biology approaches to reprogramming immune responses in cancer therapy. Nat Rev Immunol. 2022;22(10):618–635.
    24. Xu H, Zhang P, Huang S. Synergistic glioblastoma treatment with engineered E. coli and immune checkpoint inhibitors. Sci Adv. 2023;9(12):eadg3457.
    25. Zhou S, Gravekamp C, Bermudes D, Liu K. Tumour-targeting bacteria engineered to fight cancer. Nat Rev Cancer. 2021;21(11):709–722.
    26. Riglar DT, Silver PA. Engineering bacteria for diagnostic and therapeutic applications. Nat Rev Microbiol. 2018 Apr;16(4):214-225. doi: 10.1038/nrmicro.2017.172. Epub 2018 Feb 5. PMID: 29398705.
    27. Turner JD, Miller CV, Gibson L. Thermo-responsive PEG–PCL hydrogels for intracranial bacterial therapy. Biomaterials. 2023;294:121027.
    28. Huang R, Xu Y, Chen Y, Zhao L. Smart nanogels for targeted delivery of bacterial therapeutics in glioblastoma. Adv Drug Deliv Rev. 2024;200:115104.
    29. Gao X, Park JH, Xu H. Auxotrophy-based biosafety systems in engineered microbes. Biotechnol Adv. 2021;49:107757.
    30. Cai S, Li J, Zhao H. Programmable kill-switch systems for biosafety in engineered therapeutic bacteria. ACS Synth Biol. 2022;11(4):1342–1354.
    31. Turner L, Houghton J, Danino T. Hydrogel-based encapsulation of engineered bacteria for localized glioblastoma therapy. Biomaterials. 2023;292:121932.
    32. Huang P, Shen X, Wang L. Hydrogel-encapsulated engineered bacteria for sustained intracranial therapy in glioma models. ACS Biomater Sci Eng. 2024;10(6):2134–2145.
    33. Singh A, Gupta S, Sharma R. Stimuli-responsive nanogels for bacterial drug delivery in glioblastoma treatment. J Control Release. 2022;350:234–246.
    34. Shah N, Miura Y, Kohane DS. Transferrin-modified liposomal carriers enhance rodent glioma drug delivery. Nanomedicine. 2019;14(18):2317–2330.
    35. Kong L, Zhou Q, Cao H. Dendrimer-entrapped gold nanoparticles functionalized with RGD enhance siRNA delivery across the BBB. ACS Nano. 2016;10(5):5530–5541.
    36. Singh R, Malhotra R, Rawat P. Regulatory landscape of live microbial therapeutics. J Biomed Regul. 2022;15(2):88–97.
    37. Luo D, Pan Y, Zhang X. Angiopep-2 peptide-labeled RBC nanocarrier for multimodal BBB crossing and GBM therapy. J Nanobiotechnology. 2021;19(1):17.
    38. Liang C, Zhang Y, Zhou J. Macrophage-membrane-coated nanoparticles for BBB penetration and GBM therapy. Adv Funct Mater. 2023;33(12):2300650.
    39. Ma X, Wang S, Li D. Biomimetic glioma-cell-coated nanocarriers for targeted chemotherapy delivery. J Nanobiotechnology. 2024;22(1):12.
    40. Dong L, Zhao R, Wu J. RBC membrane–coated bacterial vesicles improve GBM target delivery and survival in mice. Biomaterials. 2023;351:121093.
    41. Meng Y, Hynynen K, Lipsman N. Focused ultrasound in the brain: From thermoablation to drug delivery. Nat Rev Neurol. 2018;14(10):585–599.
    42. Rogers EM, Patel RB, Smith CM. Focused ultrasound–mediated delivery of engineered bacteria to brain tumors. Theranostics. 2022;12(9):3667–3680.
    43. Ahangarzadeh S, Rezaei R, Mahjoubin-Tehran M, Pourhanifeh MH, Rajabibazl M, Hamblin MR. Outer membrane vesicles as a new platform in glioblastoma therapy. Front Oncol. 2023;13:1119256.
    44. Rogers W, Han X, Chen Y. Focused ultrasound-mediated blood–brain barrier modulation for bacterial therapy in glioblastoma. Front Bioeng Biotechnol. 2022;10:942865.
    45. Singh R, Malhotra R, Rawat P. Targeted nanogel systems for BBB transcytosis and glioblastoma drug delivery. J Biomed Nanotechnol. 2022;18(1):104–120.
    46. Shah B, Mishra V, Kesharwani P, Jain NK. Outer membrane vesicles: New insights into delivery platforms for glioblastoma therapy. Mol Pharm. 2019;16(9):3787–3798.
    47. Ng WL, Bassler BL. Bacterial quorum-sensing network architectures. Annu Rev Genet. 2009;43:197-222. doi: 10.1146/annurev-genet-102108-134304. PMID: 19686078; PMCID: PMC4313539.
    48. Gurbatri CR, Lia I, Vincent R, Coker C, Castro S, Treuting PM, Hinchliffe TE, Arpaia N, Danino T. Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies. Sci Transl Med. 2020 Feb 12;12(530):eaax0876. doi: 10.1126/scitranslmed.aax0876. PMID: 32051224; PMCID: PMC7685004.
    49. Hayashi T, Suda W, Shibata N. Multi-layered biocontainment strategies for live bacterial therapeutics. Nat Biotechnol. 2024;42(4):675–688.
    50. Prinz M, Masuda T, Wheeler MA, Quintana FJ. Microglia and Central Nervous System-Associated Macrophages-From Origin to Disease Modulation. Annu Rev Immunol. 2021 Apr 26;39:251-277. doi: 10.1146/annurev-immunol-093019-110159. Epub 2021 Feb 8. PMID: 33556248; PMCID: PMC8085109.
    51. Weller M, Wick W, Aldape K, Brada M, Berger M, Pfister SM, Nishikawa R, Rosenthal M, Wen PY, Stupp R, Reifenberger G. Glioma. Nat Rev Dis Primers. 2015 Jul 16;1:15017. doi: 10.1038/nrdp.2015.17. PMID: 27188790.
    52. Roberts NJ, Zhang L, Janku F, Collins A, Bai RY, Staedtke V, Rusk AW, Tung D, Miller M, Roix J, Khanna KV, Murthy R, Benjamin RS, Helgason T, Szvalb AD, Bird JE, Roy-Chowdhuri S, Zhang HH, Qiao Y, Karim B, McDaniel J, Elpiner A, Sahora A, Lachowicz J, Phillips B, Turner A, Klein MK, Post G, Diaz LA Jr, Riggins GJ, Papadopoulos N, Kinzler KW, Vogelstein B, Bettegowda C, Huso DL, Varterasian M, Saha S, Zhou S. Intratumoral injection of Clostridium novyi-NT spores induces antitumor responses. Sci Transl Med. 2014 Aug 13;6(249):249ra111. doi: 10.1126/scitranslmed.3008982. PMID: 25122639; PMCID: PMC4399712.
    53. Chan CTY, Lee JW, Cameron DE, Bashor CJ, Collins JJ. ‘Deadman’ and ‘Passcode’ microbial kill switches for bacterial containment. Nat Chem Biol. 2016;12(2):82–86.
    54. Mandell DJ, Lajoie MJ, Mee MT, Takeuchi R, Kuznetsov G, Norville JE, Gregg CJ, Stoddard BL, Church GM. Biocontainment of genetically modified organisms by synthetic protein design. Nature. 2015 Feb 5;518(7537):55-60. doi: 10.1038/nature14121. Epub 2015 Jan 21. Erratum in: Nature. 2015 Nov 12;527(7577):264. doi: 10.1038/nature15536. PMID: 25607366; PMCID: PMC4422498.
    55. Chan CTY, Lee JW, Cameron DE, Bashor CJ, Collins JJ. ‘Deadman’ and ‘Passcode’ microbial kill switches for bacterial containment. Nat Chem Biol. 2016;12(2):82–86.

Similar Articles

Sensor-based Sorting using De-XRT Sensor Applied to a Greenfield Copper Ore Project in Southern Brazil
Evandro Gomes dos Santos, Irineu Antônio Schadach de Brum and Wesley Monteiro Ambrós
DOI10.61927/igmin299
Use of Augmented Reality as a Radiation-free Alternative in Pain Management Spinal Surgeries
Songyuan Lu, Jingwen Hui, Eric Lee, Darin Tsui, Farshad M Ahadian and Frank E Talke
DOI10.61927/igmin236
Communication Training at Medical School: A Quantitative Analysis
Christina Louise Lindhardt and Marianne Kirstine Thygesen
DOI10.61927/igmin261

Why publish with us?

  • Global Visibility – Indexed in major databases

  • Fast Peer Review – Decision within 14–21 days

  • Open Access – Maximize readership and citation

  • Multidisciplinary Scope – Biology, Medicine and Engineering

  • Editorial Board Excellence – Global experts involved

  • University Library Indexing – Via OCLC

  • Permanent Archiving – CrossRef DOI

  • APC – Affordable APCs with discounts

  • Citation – High Citation Potential

Submit Your Article

Advertisement