issue-adv.jpg
Abstract

Abstract at IgMin Research

Our mission is to foster interdisciplinary dialogue and accelerate the advancement of knowledge across a wide spectrum of scientific domains.

Properties of Indium Antimonide Nanocrystals as Nanoelectronic Elements

Affiliation

Affiliation

    Limited Liability Company “NPP Volga”, Saratov, Russia

Abstract

By measurements on single nanocrystals of indium antimonide in the interelectrode nanogap of a scanning probe microscope, current-voltage characteristics with quasiperiodic current pulsations, are explained in the model of Bloch oscillations in a perfect nanocrystal, and individual sharp peaks - conductivity resonances, explained in the model of quantum-size limitation of the wave process of electron transport in a deep potential hole. The mutual influence of radiation from two statistical ensembles of nanocrystals from the same batch was experimentally studied and established. It is assumed that this radiation is entangled photons. It is proposed to use nanocrystals in nanoelectronics as a single-electron memristor, a single-photon bolometer, and a source of microwave radiation.

Figures

References

    1. Van Embden J, Gross S, Kittilstved KR, Della Gaspera E. Colloidal Approaches to Zinc Oxide Nanocrystals. Chem Rev. 2023 Jan 11;123(1):271-326. doi: 10.1021/acs.chemrev.2c00456. Epub 2022 Dec 23. PMID: 36563316.
    2. Montanarella F, Kovalenko MV. Three Millennia of Nanocrystals. ACS Nano. 2022 Apr 26;16(4):5085-5102. doi: 10.1021/acsnano.1c11159. Epub 2022 Mar 24. PMID: 35325541; PMCID: PMC9046976.
    3. Porotnikov D, Zamkov M. Progress and Prospects of Solution-Processed Two-Dimensional Semiconductor Nanocrystals. The Journal of Physical Chemistry C.2020; 124 (40): 21895-21908. https:/ /doi.org/10.1021/acs.jpcc.0c06868
    4. Alizadeh-Ghodsi M, Pourhassan-Moghaddam M, Zavari-Nematabad A, Walker B, Annabi N, Akbarzadeh A. State-of-the-Art and Trends in Synthesis, Properties, and Application of Quantum Dots-Based Nanomaterials. Part Part Syst Charact. 2019; 36: 1800302. DOI: 10.1002/ppsc.201800302.
    5. Zhukov ND, Sergeev SA, Hazanov AA, IT // Technical Physics Letters. 2022; 48:70-73.
    6. Yekimov AI, Onushchenko AA. Pis'ma v ZHETF. 1984; 40(8): 337.
    7. Dragunov VP, Neizvestnyy IG, Gridchin VA. Fundamentals of Nanoelectronics. M: Logos. 2006.
    8. Zhukov ND, Gavrikov MV. Technical Physics Letters. 2022; 48: 61-65.
    9. Radantsev VF. Electronic properties of semiconductor nanostructures. Ekaterinburg, 2008; 415. https://elar.urfu.ru/bitstream/10995/1473/7/1334870
    10. Lesovik GB, Sadovskiy IA. Scattering matrix approach to the description of quantum electron transport. Advances in physical sciences. 2011; 181(10): 1041.
    11. Glinskiy GF. Pis'ma v ZHTF. 2018; 44(6): 17.
    12. Utsugi T, Kuno T, Lee N, Tsuchiya R, Mine T, Hisamoto D, Saito S, Mizuno H. Phys Rev B. 2023; 108: 235308.
    13. Reich KV. Conductivity of quantum dot arrays. Advances in Physical Sciences. 2020; 190: 1062-1084. DOI: https: //doi.org/10.3367/UFNr.2019.08.038649
    14. Diaconescu B, Padilha LA, Nagpal P, Swartzentruber BS, Klimov VI. Measurement of electronic states of PbS nanocrystal quantum dots using scanning tunneling spectroscopy: the role of parity selection rules in optical absorption. Phys Rev Lett. 2013 Mar 22;110(12):127406. doi: 10.1103/PhysRevLett.110.127406. Epub 2013 Mar 22. PMID: 25166850.
    15. Zhukov ND, Gavrikov MV, Shtykov SN. Dimensional Modeling of the Synthesis and Conductivity of Colloidal Quantum Dots. Semiconductors. 2022; 56: 269-274.
    16. Zhukov ND, Gavrikov MV, Kabanov VF, Yagudin IT. Semiconductors. 2021; 55: 470–475.
    17. Montanarella F, Kovalenko MV. Three Millennia of Nanocrystals. ACS Nano.2022; 16(4):5085-5102. https://doi.org/10.1021/ acsnano.1c11159
    18. Krylsky DV, Zhukov ND. Technical Physics Letters. 2020; 46: 901–904.
    19. Zhukov ND, Gavrikov MV. MNIZH. 2021; 8(110): 19. https://doi.org/10.23670/IRJ.
    20. Dmitriyev IA, Suris RA. Electron localization and bloch oscillations in quantum-dot superlattices under a constant electric field. Physics and Technology of Semiconductors. Physics and Technology of Semiconductors. 2001; 35(2): 219.
    21. Bagrayev NT, Buravlev AD, Klyachkin LYe, Malyarenko AM, Gel'khoff V, Ivanov VK, Shelykh IA. Physics and Technology of Semiconductors. 2002; 36(4): 462.
    22. Vorob'yev LE, Danilov SN, Zerova VL, Firsov DA. Physics and Technology of Semiconductors. 2003; 37(5):604.
    23. Ivashkin A, Abdurashitov D, Baranov A, Guber F , Morozov S, Musin S, Strizhak A, Tkachev I. Testing entanglement of annihilation photons. Scientific Reports. 2023; 13:7559. https://doi.org/10.1038/s41598-023-34767-8
    24. Fujihashi Y, Shimizu R, Ishizaki A. Probing exciton dynamics with spectral selectivity through the use of quantum entangled photons. PhysicalRev Research. 2020; 2: 023256. DOI: 10.1103/PhysRevResearch.2.023256
    25. Lib O, Hasson G, Bromberg Y. Real-time shaping of entangled photons by classical control and feedback. Sci Adv. 2020; 6: eabb62989.
    26. Patent RU 2777199 “Method of manufacturing a conductive nanocell with quantum dots.” Priority 08/10/2021
    27. Chua, Leon O.Memristor-The missing circuit element. IEEE Transactions on Circuit Theory. 1971; 18: 507-519.
    28. Xiao Y, Jiang B, Zhang Z, Ke S,  Jin Y,  Wen X,  Ye Sci Technol Adv Mater. 2023; 24(1): 2162323. doi: 10.1080/14686996.2022.2162323

Similar Articles

Investigation of Lateral Vibrations in Turbine-generator Unit 5 of the Inga 2 Hydroelectric Power Plant
André Mampuya NzitaEdmond Phuku Phuati, Robert Muanda Ngimbi, Guyh Dituba Ngoma and Nathanaël Masiala Mavungu
DOI10.61927/igmin173