Help ?

IGMIN: We're glad you're here. Please click 'create a new query' if you are a new visitor to our website and need further information from us.

If you are already a member of our network and need to keep track of any developments regarding a question you have already submitted, click 'take me to my Query.'

Search

Organised by  IgMin Fevicon

Regional sites

Browse by Subjects

Welcome to IgMin Research – an Open Access journal uniting Biology, Medicine, and Engineering. We’re dedicated to advancing global knowledge and fostering collaboration across scientific fields.

Browse by Sections

At IgMin Research, we bridge the frontiers of Biology, Medicine, and Engineering to foster interdisciplinary innovation. Our expanded scope now embraces a wide spectrum of scientific disciplines, empowering global researchers to explore, contribute, and collaborate through open access.

Members

Our goal is to create channels of communication that support quick research advancements.

Articles

Our goal is to create channels of communication that support quick research advancements.

Explore Content

Our goal is to create channels of communication that support quick research advancements.

Identify Us

Our goal is to create channels of communication that support quick research advancements.

IgMin Corporation

Welcome to IgMin, a leading platform dedicated to enhancing knowledge dissemination and professional growth across multiple fields of science, technology, and the humanities. We believe in the power of open access, collaboration, and innovation. Our goal is to provide individuals and organizations with the tools they need to succeed in the global knowledge economy.

Publications Support
[email protected]
E-Books Support
[email protected]
Webinars & Conferences Support
[email protected]
Content Writing Support
[email protected]
IT Support
[email protected]

Search

Select Language

Explore Section

Content for the explore section slider goes here.

Abstract

Abstract at IgMin Research

Our goal is to create channels of communication that support quick research advancements.

General-science Group Research Article Article ID: igmin311

Microgravity Employment in Archaeology – Available Experience and Future Perspectives

Physics DOI10.61927/igmin311 Affiliation

Affiliation

    1Department of Geophysics, Tel Aviv University, Ramat Aviv 6997801, Tel Aviv, Israel

    2Azerbaijan State Oil and Industry University, 20 Azadlig Ave., Baku AZ1010, Azerbaijan

10
VIEWS
16
DOWNLOADS
Connect with Us

Abstract

Microgravity investigations are widely applied today to address various environmental and geological problems. Unfortunately, this geophysical survey type is comparatively rarely used to search for the hidden ancient targets. It is primarily caused by the small geometric size of the desired archaeological objects and various types of noise that complicate the analysis of the proper signal. At the same time, the development of a modern generation of the gravimetric field equipment enables the registration of anomalies as small as one microGal (10-8 m/s2), presenting a new challenge in this direction. Correspondingly, the accuracy of gravity variometers (gradientometers) is also significantly increased. A review of microgravity searching and localization of archeological remains of different sizes and types is given. It is shown that the development of the Physical-Archaeological Models (PAMs) increases the effectiveness of the geophysical process. A quantitative interpretation methodology for the gravity anomalies in complex physical-geological conditions, based on non-conventional solutions transferred from magnetic prospecting, is briefly explained. Advanced 3D modeling of a gravity field elucidated the peculiarities of the ancient target delineation under complex physical-environmental conditions. Calculating the second and third derivatives of the gravity potential helps reveal some peculiarities of the different buried PAMs. Many types of archaeological targets in the world have been categorized by their density and geometrical characteristics into several groups. The model computations and archaeological-geophysical reviews indicate that the microgravity investigations may be successfully applied to at least 20% of the available archaeological sites worldwide. The numerous examples supplement the review presented. The further development of the microgravity studies is also discussed. 

Figures

References

    1. Linnington RE. The test use of a gravimeter on Etruscan chambered tombs at Cerveteri. Prospezioni Archaeology. 1966;1:37-41.
    2. Arzi AA. Microgravimetry for Engineering Applications. Geophys Prospect. 1975;23(3):408-425.
    3. Fajklewicz ZJ. Gravity vertical gradient measurements for the detection of small geologic and anthropogenic forms. Geophysics. 1976;41:1016-1030.
    4. Blížkovský M. Processing and applications in microgravity surveys. Geophys Prospect. 1979;27(4):848-861.
    5. Lakshmanan J, Montlucon J. Microgravity probes the Great Pyramid. Leading Edge. 1987;(1):10-17.
    6. Slepak Z. Electromagnetic sounding and high-precision gravimeter survey define ancient stone building remains in the territory of the Kazan Kremlin (Kazan, Republic of Tatarstan, Russia). Archaeol Prospect. 1999;6:147-160.
    7. Di Filippo M, Santoro S, Toro B. Microgravity survey of the Roman Amphitheatre of Durres (Albania). Trans 6th Archaeol Prospect Conf, Rome. 2005;1-4.
    8. Yuan B, Liu S, Lu G. An integrated geophysical and archaeological investigation of the Emperor Qin Shi Huang Mausoleum. J Environ Eng Geophys. 2006;11(2):73-81.
    9. Abad IR, García FG, Abad IS, Blanco MR, Conesa JLM, Marco JB, Lladro RC. Non-destructive assessment of a buried rainwater cistern at the Carthusian Monastery ‘Vall de Crist’ (Spain, 14th century) derived by microgravimetric 2D modeling. J Cult Herit. 2007;8:197-201.
    10. Eppelbaum LV. Application of microgravity at archaeological sites in Israel: Some estimation derived from 3D modeling and quantitative analysis of the gravity field. Proc SAGEEP Conf. 2009;22(1):434-446.
    11. Eppelbaum LV. Archaeological geophysics in Israel: Past, present and future. Adv Geosci. 2010;24:45-68.
    12. Pánisová J, Frastia M, Wunderlich T, Pašteka R, Kusnirak D. Microgravity and ground-penetrating radar investigations of subsurface features at the St Catherine’s Monastery, Slovakia. Archaeol Prospect. 2013;20(3):163-174.
    13. Fais S, Radogna PV, Romoli E, Matta P, Klingele EE. Microgravity for detecting cavities in an archaeological site in Sardinia (Italy). Near Surf Geophys. 2015;13:495-502.
    14. Gołebiowski T, Pasierb B, Porzucek S, Łój M. Complex prospection of medieval underground salt chambers in the village of Wiślica, Poland. Archaeol Prospect. 2018;25:243-254.
    15. Tianyao T, Qianshen W, Mancheol S. Gravity prospecting of the underground Palace of Ming Tombs, China. J Korean Geophys Soc. 2000;3(3):185-192.
    16. Pašteka R, Pánisová J, Zahorec P, Papčo J, Mrlina J, Fraštia M, Vargemezis G, Kušnirák D, Zvara I. Microgravity method in archaeological prospection: methodical comments on selected case studies from crypt and tomb detection. Archaeol Prospect. 2020;27:415-431.
    17. Pašteka R, Zahorec P, Papčo J, Mrlina J, Götze HJ, Schmidt S. The discovery of the “muons-chamber” in the Great Pyramid; could high-precision microgravimetry also map the chamber? J Archaeol Sci Rep. 2022;43:103464.
    18. Eppelbaum LV. System of potential geophysical field application in archaeological prospection. In: D’Amico S, Venuti V, editors. Handbook on Cultural Heritage Analysis. Springer; 2022;771-809.
    19. Colley GC. The detection of caves by gravity measurements. Geophys Prospect. 1963;11(1):1-9.
    20. Beres M, Luetscher M, Olivier R. Integration of ground penetrating radar and microgravimetric methods to map shallow caves. J Appl Geophys. 2001;46:249-262.
    21. Rybakov M, Goldshmidt V, Fleischer L, Rotstein Y. Cave detection and 4-D monitoring: a microgravity case history near the Dead Sea. Leading Edge. 2001;20(8):896-900.
    22. Debeglia N, Bitri A, Thierry P. Karst investigations using microgravity and MASW: application to Orléans, France. Near Surf Geophys. 2006;4:215-225.
    23. Eppelbaum LV. Revealing subterranean karst using modern analysis of potential and quasi-potential fields. Proc SAGEEP Conf. 2007;20:797-810.
    24. Eppelbaum LV, Ezersky MG, Al-Zoubi AS, Goldshmidt VI, Legchenko A. Study of the factors affecting the karst volume assessment in the Dead Sea sinkhole problem using microgravity field analysis and 3D modeling. Adv Geosci. 2008;19:97-115.
    25. Whitelaw JL, Mickus K, Whitelaw MJ, Nave J. High-resolution gravity study of the Gray Fossil Site. Geophysics. 2008;73(2):B25-B32.
    26. Al-Zoubi A, Eppelbaum L, Abueladas A, Ezersky M, Akkawi E. Methods for removing regional trends in microgravity under complex environments: testing on 3D model examples and investigation in the Dead Sea coast. Int J Geophys. 2013;2013:1-13. Article ID 341797.
    27. Ezersky M, Eppelbaum LV, Legchenko A. Applied Geophysics for Karst and Sinkhole Investigations: The Dead Sea and Other Regions. Bristol: IOP Publishing; 2023;705.
    28. Yule DE, Sharp MK, Butler DW. Microgravity investigations of foundation conditions. Geophysics. 1998;63:95-103.
    29. Butler DK. Potential fields methods for location of unexploded ordnance. Leading Edge. 2001;20(8):890-895.
    30. Branston MW, Styles P. Site characterization and assessment using the microgravity technique: a case history. Near Surf Geophys. 2006;4:377-385.
    31. Bradley CC, Ali MY, Shawky I, Levannier A, Dawoud MA. Microgravity investigation of an aquifer storage and recovery site in Abu Dhabi. First Break. 2007;25(11):63-69.
    32. Khosravi A, Motavalli-Anbaran SH, Sarallah-Zabihi S, Emami Niri M. Sensitivity analysis of time lapse gravity for monitoring fluid saturation changes in a giant multi-phase gas reservoir located in south of Iran. J Earth Space Phys. 2019;44(4):53-61.
    33. Porzucek S, Loj M. Microgravity survey to detect voids and loosening zones in the vicinity of the mine shaft. Energies. 2021;14:3021.
    34. Sjostrom KJ, Butler OK. Noninvasive weight determination of stockpiled ore through microgravity measurements. Report prepared for the Defense National Stockpile Center, Fort Belvoir, VA, USA. 1996;158 p.
    35. Karshenbaum NA, Veselov KE, Gladchenko LG, Mikhailov IN. Application of high-precision gravity surveys for direct searching for hydrocarbons in the Kerch Peninsula. Appl Geophys (Prikladnaya Geofizika). 1997;94:91-96. Russian.
    36. Eppelbaum LV, Khesin BE. Advanced 3-D modelling of gravity field unmasks reserves of a pyrite-polymetallic deposit: a case study from the Greater Caucasus. First Break. 2004;22(11):53-56.
    37. Styles P, Toon S, Thomas E, Skittrall M. Microgravity as a tool for the detection, characterization and prediction of geohazard posed by abandoned mining cavities. First Break. 2006;24:51-60.
    38. Nind C, Seigel HO. Development of a borehole gravimeter for mining applications. First Break. 2007;25(7):71-77.
    39. Slonka S. Microgravity estimation of filling up the near surface mineshaft – example of the gravity modelling usage. Proc 17th EAGE Eur Meet Environ Eng Geophys. 2011;1-4.
    40. Gadirov VG, Eppelbaum LV. Detailed gravity, magnetics successful in exploring Azerbaijan onshore areas. Oil Gas J. 2012;110(11):60-73.
    41. Watanabe H, Okubo S, Sakashita S. Drain-back process of basaltic magma in the conduit detected by microgravity observation Oshima volcano, Japan. Geophys Res Lett. 1998;25(15):2865-2868.
    42. Deroussi S, Diament M, Feret JB, Nebut T, Staudacher Th. Localization of cavities in a thick lava flow by microgravimetry. J Volcanol Geotherm Res. 2009;184:193-198.
    43. Yagi M, Inoue R, Sasaya Y, Sawada S, Yokota K. Microgravity survey: case study for underground lava tube around Mt. Fuji. Trans 6th Asia Pac Meet Near Surf Geosci Eng. 2024;2024:1-5.
    44. Bichara M, Erling JC, Lakshmanan J. Technique de mesure et d’interprétation minimisant les erreurs de mesure en microgravimétrie. Geophys Prospect. 1981;29:782-789.
    45. Butler DK. Interval gravity-gradient determination concepts. Geophysics. 1984;49(6):828-832.
    46. Butler DK. Microgravimetric and gravity-gradient techniques for detection of subsurface cavities. Geophysics. 1984;49(7):1084-1096.
    47. Debeglia N, Dupont F. Some critical factors for engineering and environmental investigations in microgravity. J Appl Geophys. 2002;50:435-454.
    48. Eppelbaum LV. Review of environmental and geological microgravity applications and feasibility of their implementation at archaeological sites in Israel. Int J Geophys. 2011;2011:1-9. Article ID 927080.
    49. Gadirov V, Eppelbaum LV. Density-thermal dependence of sedimentary associations calls for reinterpreting detailed gravity surveys. Ann Geophys. 2015;58(1):1-6.
    50. Khesin BE, Alexeyev VV, Eppelbaum LV. Interpretation of geophysical fields in complicated environments. Dordrecht: Kluwer Academic Publishers; 1996;353. (Advanced Approaches in Geophysics).
    51. Telford WM, Geldart LP, Sheriff RE. Applied Geophysics. Cambridge: Cambridge Univ. Press; 1993;770.
    52. Jacoby W, Peter S. Gravity Interpretation: Fundamentals and Application of Gravity Inversion and Geological Interpretation. Dordrecht–Berlin: Springer; 2009;395.
    53. Eppelbaum LV. Geophysical Potential Fields: Geological and Environmental Applications. Amsterdam–New York: Elsevier; 2019;467.
    54. Kerisel J. Le dossier scientifique sur la pyramide de Kheops. Archeologia. 1988;232:46-54.
    55. Lakshmanan J. The generalized gravity anomaly: endoscopic microgravity. Geophysics. 1991;56(5):712-723.
    56. Issawy E, Radwan A. Microgravimetry for archaeo-prospecting in Luxor, Egypt. In: Trans Near Surf Geosci 18th Eur Meet Environ Eng Geophys. Paris, France; 2012 Sep 3–5. P47:1-4.
    57. Saleh S, Saleh A, El Emam AE, Radwan AM, Lethy A, Khalil HA, El-Qady G. Detection of archaeological ruins using integrated geophysical surveys at the Pyramid of Senusret II, Lahun, Fayoum, Egypt. Pure Appl Geophys. 2022;179:1981-1993.
    58. Ivashov S, Bugaev A, Razevig V, Anfimov D. The simplest assessment of the possibility of microgravimeters using to search for unknown voids inside the Khufu Pyramid. Glob J Archaeol Anthropol. 2023;13(5):1-8.
    59. Linford NT. Geophysical survey at Boden Vean, Cornwall, including an assessment of the microgravity technique for the location of suspected archaeological void features. Archaeometry. 1998;40(1):187-216.
    60. Castiello G, Florio G, Grimaldi M, Fedi M. Enhanced methods for interpreting microgravity anomalies in urban areas. First Break. 2010;28(8):93-98.
    61. Chromčák J, Ižvoltová J, Grinč M. In: Molčíková et al., eds. Application of microgravity for searching of cavities in historical sites. In: Advances and Trends in Geodesy, Cartography and Geoinformatics. 2018:133-137.
    62. Nicolas F, Seoane L, Llubes M, Téreygeol F. Searching for ancient pits and voids at the Ouels Mine (Castel-Minier, France) by using geophysical methods. J Archaeol Sci Rep. 2024;57:104624.
    63. Finkelstein I, Martin MAS, eds. Megiddo 6. The 2010–2014 Seasons. Monograph Series of the Sonia and Marco Nadler Institute of Archaeology, Tel Aviv University. 2022. 1924 p.
    64. Ebrahimi A, Dehghan MJ, Ashtari A. Contribution of gravity and Bristow methods for Karez (aqueduct) detection. J Appl Geophys. 2019;161:37-44.
    65. Bárta J, Belov T, Frolík J, Jirk J. Applications of geophysical surveys for archaeological studies in urban and rural areas in the Czech Republic and Armenia. Geosciences. 2020;10:356.
    66. Porath Y, ‘Ad U. Excavations along the High Level Aqueduct to Caesarea Maritima. Atiqot. 2015;81(10):107-149. Hebrew. English summary.
    67. Cuss RJ, Styles P. The application of microgravity in industrial archaeology: an example from the Williamson tunnels, Edge Hill, Liverpool. In: Pollard AM, ed. Geoarchaeology: Exploration, Environments, Resources. Geol Soc Lond Spec Publ. 1999;165:41-59.
    68. Chernov AA. Precision gravity observations at engineering-geological and archeological objects. In: Near Surface 2009 – 15th Eur Meet Environ Eng Geophys. Dublin, Ireland; 2009.
    69. Orfanos C, Apostolopoulos G. 2D–3D resistivity and microgravity measurements for the detection of an ancient tunnel in the Lavrion area, Greece. Near Surf Geophys. 2011;9:449-457.
    70. Madej J, Łój M, Porzucek S, Jaśkowski W, Karczewski J, Tomecka‐Suchoń S. The geophysical truth about the ‘Gold Train’ in Walbrzych, Poland. Archaeol Prospect. 2018;25:137-146.
    71. Pašteka R, Zahorec P. Interpretation of microgravimetrical anomalies in the region of the former church of St. Catherine, Dechtice. Contrib Geophys Geod. 2000;30(4):373-387.
    72. Batayneh A, Khataibeh J, Alrshdan H, Tobasi U, Al-Jahed N. The use of microgravity, magnetometry and resistivity surveys for the characterization and preservation of an archaeological site at Ummer-Rasas, Jordan. Archaeol Prospect. 2007;14:60-70.
    73. Rabbel W, Erkul E, Stümpel H, Wunderlich T, Pašteka R, Papčo J, Niewönher P, Bariş Ş, Çakin O, Pekşen E. Discovery of a Byzantine Church in Iznik/Nicaea, Turkey: an educational case history of geophysical prospecting with combined methods in urban areas. Archaeol Prospect. 2018;22:1-20.
    74. Pagliara E, Di Filippo M. Microgravity prospecting in San Paolo fuori le Mura Basilica, Rome. In: Proc 9th SEGJ Int Symp. Sapporo, Japan; 2009 Oct 12–14.
    75. Pánisová J, Murín I, Pašteka R, Haličková J, Brunčák P, Pohánka V, Papčo J, Milo P. Geophysical fingerprints of shallow cultural structures from microgravity and GPR measurements in the Church of St. George, Svätý Jur, Slovakia. J Appl Geophys. 2016;127:102-111.
    76. Sarlak B, Aghajani H. Archaeological investigations at Tepe Hissar-Damghan using gravity and magnetic methods. J Res Archaeometry. 2017;2(2):1-18.
    77. Padín J, Martín A, Anquela AB. Archaeological microgravimetric prospection inside Don Church (Valencia, Spain). J Archaeol Sci. 2012;39:547-554.
    78. Slepak ZM, Nugmanova GG. Geophysical investigations for archaeological studying of the historic centre of Kazan. In: Near Surface 2004 – 10th Eur Meet Environ Eng Geophys. Utrecht, The Netherlands; 2004.
    79. Safarov RT, Akhundov TI, Zamanova AH, Aliyev ChS, Sharifova AT, Abdullayev AN, Bagirli RJ. Results of archaeo-geophysical methods on Alkhantepe archaeological monument (Azerbaijan territory). ANAS Trans Earth Sci. 2019;(1):25-31.
    80. Sari NP, Afrizal T, Abdullah F, Ismail N. Application of the gravity method in cultural heritage of the Cot Sidi Abdullah site, Samudera Pasai, North Aceh. J Nat. 2020;20(3):80-84.
    81. Pánisová J, Pašteka R, Papčo J, Fraštia M. The calculation of building corrections in microgravity surveys using close range photogrammetry. Near Surf Geophys. 2012;10(5):391-399.
    82. Yu D. The influence of buildings on urban gravity surveys. J Environ Eng Geophys. 2014;19(3):157-164.
    83. Zahorec P, Papčo J, Mikolaj M, Pašteka R, Szalaiová V. The role of near topography and building effects in vertical gravity gradients approximation. First Break. 2014;32:1-7.
    84. Loj M, Porzucek S. Detailed analysis of the gravitational effects caused by the buildings in microgravity survey. Acta Geophys. 2019;67:1799-1807.
    85. Sarris A, Dunn RK, Rife JL, Papadopoulos N, Kokkinou E, Mundigler C. Geological and geophysical investigations in the Roman cemetery at Kenchreai (Korinthia), Greece. Archaeol Prospect. 2007;14:1-23.
    86. Cesnek T, Chromcak J, Izvoltová J. Geodetic and microgravity measurement used in St. Mary’s Assumption Chapel. IOP Conf Ser Mater Sci Eng. 2019;661:1-3.
    87. Zvara I, Pašteka R, Karsol R. Density inversion of selected microgravity anomalies using L2-smoothing and minimum support focusing stabilizers. Contrib Geophys Geod. 2021;51(1):63-81.
    88. AbouAly N, Mohamed A-MS, Zahran K, Saleh M, El Fergawy K, Hegazy EE. Using microgravity techniques in the archaeology case study, the animal cemetery at Saqqara, Egypt. NRIAG J Astron Geophys. 2023;12(1):96-105.
    89. Parasnis DS. Principles of Applied Geophysics. Prentice Hall; 1997;437.
    90. Eppelbaum LV, Khesin BE, Itkis SE. Prompt magnetic investigations of archaeological remains in areas of infrastructure development: Israeli experience. Archaeol Prospect. 2001;8(3):163-185.
    91. Eppelbaum LV. Quantitative interpretation of magnetic anomalies from thick bed, horizontal plate, and intermediate models under complex physical-geological environments in archaeological prospection. Archaeol Prospect. 2015;23(2):255-268.
    92. Alexeyev VV, Khesin BE, Eppelbaum LV. Geophysical fields observed at different heights: A common interpretation technique. In: Proceedings of the Meeting of the Society of Exploration Geophysicists. Jakarta; 1996;104-108.
    93. Magness J, Avni G. Jews and Christians in a Late Roman Cemetery at Beth Guvrin. In: Lapin H, editor. Religious and Ethnic Communities in Late Roman Palestine. 1998;87-114.
    94. Eppelbaum LV, Khesin BE, Itkis SE. Archaeological geophysics in arid environments: Examples from Israel. J Arid Environ. 2010;74(7):849-860.
    95. Gilat A, Shirav M, Bogoch R, Halicz L, Avner L, Nahleli D. Significance of gold exploitation in the early Islamic period, Israel. J Archaeol Sci. 1993;20:429-437.
    96. Nowell DAG. Gravity terrain corrections — an overview. J Appl Geophys. 1999;42(2):117-134.
    97. Hirt C, Yang M, Kuhn M, Bucha M, Kurzmann A, Pail R. SRTM2gravity: an ultrahigh resolution global model of gravimetric terrain corrections. Geophys Res Lett. 2019;46:4618-4627.
    98. Alperovich L, Eppelbaum L, Zheludev V, Dumoulin J, Soldovieri F, Proto M. A new combined wavelet methodology applied to GPR and ERT data in the Montagnole experiment (French Alps). J Geophys Eng. 2013;10(2):025017.
    99. Hajian IA, Zomorrodian H, Styles P, Greco F, Lucas C. Depth estimation of cavities from microgravity data using a new approach: the local linear model tree (LOLIMOT). Near Surf Geophys. 2012;10:221-234.
    100. Klokočník J, Kostelecký J, Eppelbaum L, Bezděk A. Gravity disturbances, the Marussi tensor, invariants and other functions of the geopotential represented by EGM 2008. J Earth Sci Res. 2014;2(3):88-101.
    101. Klokočník J, Kostelecký J, Bezděk A, Cílek V, Peŝek I. A support for the existence of paleolakes and paleorivers buried under Saharan sand by means of “gravitational signal” from EIGEN 6C4. Arab J Geosci. 2017;10:1-28.
    102. Pašteka R, Karcol R, Kusnirák D, Mojzeš A. REGCONT: A Matlab based program for stable downward continuation of geophysical potential fields using Tikhonov regularization. Comput Geosci. 2012;49:278–289.
    103. Zhang C, Lü Q-T, Yan J-Y, Qi G. Numerical solutions of the mean-value theorem: New methods for downward continuation of potential fields. Geophys Res Lett. 2018;45:3461-3470.
    104. Chen M, Yang W. An enhancing precision method for downward continuation of gravity anomalies. J Appl Geophys. 2022;204:104753.
    105. Li H, Chen S, Li Y, Zhang B, Zhao M, Han J. Stable downward continuation of the gravity potential field implemented using deep learning. Front Earth Sci. 2023;10:1-13.
    106. Wang T, Liu S, Cai H, Hu X. Comparison and application of downward continuation methods for potential field data. Geophysics. 2023.
    107. Rim H, Li Y. Single-hole imaging using borehole gravity gradiometry. Geophysics. 2012;77:67-76.
    108. Zhdanov MS, Han M, Wan L. Joint iterative migration of surface and borehole gravity gradiometry data. In: Kasahara J, Zhdanov MS, Mikada H, editors. Active Geophysical Monitoring. Elsevier; 2020;97-121.
    109. Eppelbaum LV, Alperovich L, Zheludev V, Pechersky A. Application of informational and wavelet approaches for integrated processing of geophysical data in complex environments. In: Proceedings of the 2011 SAGEEP Conference. Charleston, SC; 2011;24:37.
    110. Eppelbaum LV. Detecting buried archaeological remains by the use of geophysical data processing with ‘diffusion maps’ methodology. In: Trans. of the 11th EGU Meeting, Geophys Res Abstr. 2015;17:EGU2015-2793.
    111. Averbuch AZ, Neittaanmäki P, Zheludev VA. Spline and spline wavelet methods with applications to signal and image processing. Vol I: Periodic Splines. Springer; 2014;496.
    112. Averbuch AZ, Neittaanmäki P, Zheludev VA. Spline and spline wavelet methods with applications to signal and image processing. Vol II: Non-periodic Splines. Springer; 2016;426.
    113. Averbuch AZ, Neittaanmäki P, Zheludev VA. Spline and spline wavelet methods with applications to signal and image processing. Vol III: Selected Topics. Springer; 2019;311.
    114. Wilson SS, Crawford NC, Croft LA, Howard M, Miller S, Rippy T. Autonomous robot for detecting subsurface voids and tunnels using microgravity. Proc SPIE. 2006;6201:620111.
    115. Wilson SS, Gurung L, Paaso EA, Wallace J. Creation of robot for subsurface void detection. IEEE Conference on Technologies for Homeland Security; 2009 May 11-12; Waltham, MA.669-676.
    116. Stray B, Lamb A, Kaushik A, Vovrosh J, Rodgers A, Winch J, Hayati F, Boddice D, Stabrawa A, Niggebaum A, Langlois M, Lien YH, Lellouch S, Roshanmanesh S, Ridley K, de Villiers G, Brown G, Cross T, Tuckwell G, Faramarzi A, Metje N, Bongs K, Holynski M. Quantum sensing for gravity cartography. Nature. 2022 Feb;602(7898):590-594. doi: 10.1038/s41586-021-04315-3. Epub 2022 Feb 23. PMID: 35197616; PMCID: PMC8866129.
    117. Wu L, Tian J. Automated gravity gradient tensor inversion for underwater object detection. J Geophys Eng. 2010;7:410–6.
    118. Vu DT, Verdun J, Cali J, Maia M, Poitou P, Ammann J, Roussel C, D’Eu J-F, Bouhier M-É. High-resolution gravity measurements on board an autonomous underwater vehicle: Data reduction and accuracy assessment. Remote Sens. 2024;16:461.
    119. Qiao Z-K, Zhang J-J, Yuan P, Li LL, Hu R, Yang HX. Application of gravity gradient measurement in the detection of urban underground space. J Appl Geophys. 2025;237:105700.
    120. Kaub L, Seruge C, Chopra SD, Glen JM, Teodorescu M. Developing an autonomous unmanned aerial system to estimate field terrain corrections for gravity measurements. Lead Edge. 2018;37:584–91.
    121. Tang S, Liu H, Yan S, Xu X, Wu W, Fan J, Liu J, Hu C, Tu L. A high-sensitivity MEMS gravimeter with a large dynamic range. Microsyst Nanoeng. 2019 Oct 7;5:45. doi: 10.1038/s41378-019-0089-7. PMID: 31636934; PMCID: PMC6799805.
    122. Passey E, Hammond G, Bramsiepe S, Prasad A, Middlemiss R, Paul D, Walker R, Noack A, Anastasiou K. Development of a MEMs gravimeter for drone-based field surveys. Proceed EGU Gen Assem Conf Abstracts. 2020 May 4–8.
    123. Luo K, Cao J, Wang C, Cai S, Yu R, Wu M, Yang B, Xiang W. First unmanned aerial vehicle airborne gravimetry based on the CH-4 UAV in China. J Appl Geophys. 2022;206:104835.
    124. Peng C, Wang C, Li Z. Review of geophysical data acquisition methods for underground feature detection and future trends. Tunn Undergr Space Technol. 2025;163:106731.
    125. Bissell C. Vladimir Aleksandrovich Kotelnikov: Pioneer of the sampling theorem, cryptography, optimal detection, planetary mapping. IEEE Commun Mag. 2009;47(10):24–32.
    126. Eppelbaum LV, Khabarova O, Birkenfeld M. Advancing Archaeo-Geophysics Through Integrated Informational-Probabilistic Techniques and Remote Sensing. J Appl Geophys. 2024;227:105437.

Similar Articles

Unveiling the Hidden Beat: Heart Rate Variability and the Vagus Nerve as an Emerging Biomarker in Breast Cancer Management
Constantinos KoutsojannisAthanasios Fouras, Dionysia Chrysanthakopoulou, Ioanna Michou and Savvina Mariettou
DOI10.61927/igmin309
System for Detecting Moving Objects Using 3D Li-DAR Technology
Md. Milon Rana, Orora Tasnim Nisha, Md. Mahabub Hossain, Md Selim Hossain, Md Mehedi Hasan and Md Abdul Muttalib Moon
DOI10.61927/igmin167

Why publish with us?

  • Global Visibility – Indexed in major databases

  • Fast Peer Review – Decision within 14–21 days

  • Open Access – Maximize readership and citation

  • Multidisciplinary Scope – Biology, Medicine and Engineering

  • Editorial Board Excellence – Global experts involved

  • University Library Indexing – Via OCLC

  • Permanent Archiving – CrossRef DOI

  • APC – Affordable APCs with discounts

  • Citation – High Citation Potential

Submit Your Article

Advertisement