Abstract
This paper presents a Technical and Economic Feasibility Study of proposed Pumped Storage Power Plants (PSPPs) at KM (Kuda Oya, Mul Oya), KMG (Kuda Oya, Mul Oya, Gurugal Oya), KG (Kuda Oya, Gurugal Oya), and Dambagasthalawa. Sri Lanka aims to transition away from a coal-dominant electricity sector within the next decade, aligning with sustainability goals outlined by the United Nations. In pursuit of affordable and clean energy sustainability, the Sri Lankan government has opted to shift its long-term energy policy towards renewable sources, departing from fossil fuels. Despite this shift, a significant portion of Sri Lanka's electricity consumption—approximately 600 MW from oil and 900 MW from coal—persists. The country now aims to source 80% of its energy from renewable sources, necessitating a focus on underutilized opportunities.
In selecting the best candidate sites for Pumped Storage Power Plant (PSPP) design, comprehensive hydrological and sedimentation studies play a pivotal role. In this endeavor, we endeavor to re-rank the selected candidate sites for pumped storage power plants considering technical & financial feasibility by conducting comprehensive hydrological and sedimentation studies. These studies are pivotal for assessing the feasibility and long-term viability of potential sites, aiming to select the most sustainable candidate site in every aspect. Therefore, the primary objective of this research is to conduct a thorough hydrologic study of the proposed KMG and Dambagastalawa pump storage power plants, focusing on identifying potential energy-saving opportunities in pumping when these plants operate as open-loop systems. This study will analyze the hydrology of the upper ponds of the Kuda Oya, Mul Oya, and Gurugal Oya (KMG) pump storage power plants, and the Dambagastalawa Oya pump storage power plant, assessing the potential reduction in pumping energy. Such insights are essential for optimizing the design and operation of PSPPs to ensure economic viability and sustainable energy generation.
Furthermore, this research addresses the importance of studying sedimentation in both the upper and lower ponds of the KMG and Dambagastalawa pump storage power plants. Sedimentation calculations will be performed to determine reservoir lifetimes, offering critical insights into the long-term feasibility and maintenance requirements of these projects. The findings of this study are expected to provide valuable guidance to policymakers, investors, and PSPP designers in selecting the most suitable sites for addressing Sri Lanka's peak power demands and urgent electricity needs. By emphasizing the significance of hydrological and sedimentation studies, this research underscores the importance of thorough site assessment in optimizing the design and operation of Pumped Storage Power Plants.