Subjects Content

Welcome to IgMin Research - A BioMed & Engineering Open Access Journal, your gateway to a diverse world of scientific exploration and innovation. We proudly stand at the forefront of scholarly dissemination, bringing together the realms of Biology, Medicine and Engineering under a single umbrella. With a commitment to open access and knowledge democratization, we aim to empower researchers, scholars, and enthusiasts across the globe to explore, contribute, and collaborate.

Biology

Explore the intricate world of living organisms through disciplines such as Zoology, Histology, and Microbiology. Immerse yourself in the complexities of genomics and molecular biology, uncover the mysteries of taxonomic systems, and delve into the world of human biology. Venture into the realms of chemistry, from Organic Chemistry to Physical Chemistry, and explore the delicate balances of Earth's ecosystems through Atmospheric Science and Ecology....

Medicine

Discover the intricacies of the human body and its ailments through the prism of Medical Sciences. Journey through disciplines like Physiology, Pharmacology, and Anatomy, and explore the frontiers of Molecular Medicine and Immunology. Engage in the discourse on Clinical Trials and Health Economics, and unravel the complexities of Pain Management and Infectious Diseases.

Engineering

Immerse yourself in the realm of engineering marvels, from Control Engineering and Power Engineering to Materials Engineering and Mechanical Engineering. Uncover the mysteries of Signal Processing and delve into the precision of Instrumentation. Navigate the world of Automation and Artificial Intelligence, and witness the convergence of disciplines in Mechatronics Engineering and Biomedical Engineering.

General Science

Explore the complexities of the natural world through the lens of General Science. Delve into fields like Physics, Chemistry, Biology, and Earth Sciences, and examine cutting-edge topics in Environmental Science and Engineering. Engage in discussions on scientific innovations and the impact of research on society and health.

Members Content

Our vision is to propel knowledge forward by merging insights from diverse scientific fields.

Articles Content

Our vision is to propel knowledge forward by merging insights from diverse scientific fields.

Explore Content

Our vision is to propel knowledge forward by merging insights from diverse scientific fields.

Identify Us

Our vision is to propel knowledge forward by merging insights from diverse scientific fields.

Search

Explore Section

Content for the explore section slider goes here.

Abstract

Abstract at IgMin Research

Our vision is to propel knowledge forward by merging insights from diverse scientific fields.

Biology Group Review Article Article ID: igmin233

A New Physical Phenomenon Discovered When Microbiology Meets Surrealism: The Yoshida Effect has the Power to Fuse Bacteria and Nano-Acicular Materials

Microbiology Affiliation

Affiliation

    Department of Biochemistry and Applied Biosciences, University of Miyazaki, 1-1 Gakuen Kibanadai-Nishi, Miyazaki 889-2192, Japan

Abstract

Surrealism is a means of artistic expression that places automatism at the root of creation, and it has pursued thought that is entirely free of any preconceived notions or restraints. Art and science are seemingly incompatible with each other—one is emotional, the other rational—but here the author would like to consider the sort of thinking that could emerge if science met surrealism halfway. The author would also like to present the Yoshida effect, a physical phenomenon that was chanced upon serendipitously in which microbiology approaches surrealism. The Yoshida effect is the formation of a fusion body called a penetron when bacterial cells collide with a nano-sized acicular (needle-shaped) material in a hydrogel friction field. The penetron as an intermediate was applied to the finely detection method of asbestos, and gene transformation method by plasmid DNA.

Figures

References

    1. Breton A. Manifeste du surréalisme. Paris: Ed. Du Sagittaire. 1924.
    2. Adam Z. Alternative modernism: revisiting the 'radical' movement of Dadaism and surrealism. Inter Peer Reviewed/Refereed Multidiscip J. 2022;11:286-289.
    3. Paung Y. Surrealism: Art of Subconscious. 2017.
    4. Fawaz R, Sellier A, Beucler N, Lozouet M, Delmas JM, Desse N, Dagain A. The Origin of Surrealism: Rethinking Apollinaire's Penetrating Brain Injury with Current Knowledge Regarding White Matter Tracts. World Neurosurg. 2023 May;173:44-47. doi: 10.1016/j.wneu.2023.01.121. Epub 2023 Feb 4. PMID: 36739894.
    5. Fer B. Surrealism, myth and psychoanalysis. In: Realism, rationalism, surrealism: Art between the wars. 1993:170-249.
    6. Adibi AA. A brief history of collage. In: Collage: A process in architectural design. 2021:1-5.
    7. Iversen M. Indexical drawing: on frottage. In: A Companion to Contemporary Drawing. 2020:257-270.
    8. Zuena M, Pensabene Buemi L, Nodari L, et al. Portrait of an artist at work: exploring Max Ernst’s surrealist techniques. Herit Sci. 2022;10:139.
    9. Loizos Y. The possibilities of surrealist photography to architectural design and proposition. AIS-Arch Imag Stud. 2020;1:67-75.
    10. Ji H, Park J. The dépaysement art of the new media era incorporating the microscopic world. Digit Creat. 2021;32(2):124-142.
    11. Orlich IA. Surrealism and the feminine element: André Breton’s Nadja and Gellu Naum’s Zenobia. Philologica Jassyensia. 2006;2:213-224.
    12. van Zuylen J. The microscopes of Antoni van Leeuwenhoek. J Microsc. 1981 Mar;121(Pt 3):309-28. doi: 10.1111/j.1365-2818.1981.tb01227.x. PMID: 7012367.
    13. Robertson LA. Antoni van Leeuwenhoek 1723-2023: a review to commemorate Van Leeuwenhoek's death, 300 years ago : For submission to Antonie van Leeuwenhoek journal of microbiology. Antonie Van Leeuwenhoek. 2023 Oct;116(10):919-935. doi: 10.1007/s10482-023-01859-4. Epub 2023 Jul 31. PMID: 37525002; PMCID: PMC10509104.
    14. Deguchi S, Shimoshige H, Tsudome M, Mukai SA, Corkery RW, Ito S, Horikoshi K. Microbial growth at hyperaccelerations up to 403,627 x g. Proc Natl Acad Sci U S A. 2011 May 10;108(19):7997-8002. doi: 10.1073/pnas.1018027108. Epub 2011 Apr 25. PMID: 21518884; PMCID: PMC3093466.
    15. Byrd AL, Segre JA. Infectious disease. Adapting Koch's postulates. Science. 2016 Jan 15;351(6270):224-6. doi: 10.1126/science.aad6753. PMID: 26816362.
    16. Okawara H, Shinomiya K, Nonomura Y. Friction Dynamics on Rough Agar Gel Surfaces. J Oleo Sci. 2019 Sep 4;68(9):873-879. doi: 10.5650/jos.ess19099. Epub 2019 Aug 14. PMID: 31413244.
    17. Yoshida N. Discovery and application of the Yoshida effect: nano-sized acicular materials enable penetration of bacterial cells by sliding friction force. Recent Pat Biotechnol. 2007;1(3):194-201. doi: 10.2174/187220807782330147. PMID: 19075841.
    18. Yoshida N, Sato M. Plasmid uptake by bacteria: a comparison of methods and efficiencies. Appl Microbiol Biotechnol. 2009 Jul;83(5):791-8. doi: 10.1007/s00253-009-2042-4. Epub 2009 May 27. PMID: 19471921.
    19. Popova E, Popov VL. The research works of Coulomb and Amontons and generalized laws of friction. Friction. 2015;3:183-190.
    20. Yoshida N, Ide K. Plasmid DNA is released from nanosized acicular material surface by low molecular weight oligonucleotides: exogenous plasmid acquisition mechanism for penetration intermediates based on the Yoshida effect. Appl Microbiol Biotechnol. 2008 Oct;80(5):813-21. doi: 10.1007/s00253-008-1637-5. Epub 2008 Aug 13. PMID: 18704395.
    21. Virta RL. Asbestos: Geology, mineralogy, mining, and uses. Washington, DC: US Department of the Interior, US Geological Survey; 2002. p. 28.
    22. Wallis SL, Emmett EA, Hardy R, Casper BB, Blanchon DJ, Testa JR, Menges CW, Gonneau C, Jerolmack DJ, Seiphoori A, Steinhorn G, Berry TA. Challenging Global Waste Management - Bioremediation to Detoxify Asbestos. Front Environ Sci. 2020 Mar;8:20. doi: 10.3389/fenvs.2020.00020. Epub 2020 Mar 4. PMID: 33269243; PMCID: PMC7707057.
    23. Yoshida N, Takebe K. Quantitative detection of asbestos fiber in gravelly sand using elastic body-exposure method. J Ind Microbiol Biotechnol. 2006 Oct;33(10):827-33. doi: 10.1007/s10295-006-0125-0. Epub 2006 Apr 25. PMID: 16636778.
    24. Yoshida N, Ikeda T, Yoshida T, Sengoku T, Ogawa K. Chrysotile asbestos fibers mediate transformation of Escherichia coli by exogenous plasmid DNA. FEMS Microbiol Lett. 2001 Feb 20;195(2):133-7. doi: 10.1111/j.1574-6968.2001.tb10510.x. PMID: 11179641.
    25. Yoshida N, Kodama K, Nakata K, Yamashita M, Miwa T. Escherichia coli cells penetrated by chrysotile fibers are transformed to antibiotic resistance by incorporation of exogenous plasmid DNA. Appl Microbiol Biotechnol. 2002 Dec;60(4):461-8. doi: 10.1007/s00253-002-1148-8. Epub 2002 Oct 18. PMID: 12466888.
    26. Green MR, Sambrook J. Easy Transformation of Escherichia coli: Nanoparticle-Mediated Transformation. Cold Spring Harb Protoc. 2019 Dec 2;2019(12). doi: 10.1101/pdb.prot101204. PMID: 31792143.
    27. Tan H, Fu L, Seno M. Optimization of bacterial plasmid transformation using nanomaterials based on the Yoshida effect. Int J Mol Sci. 2010;11(12):4961-72. doi: 10.3390/ijms11124962. Epub 2010 Dec 3. PMID: 21614185; PMCID: PMC3100829.
    28. Wilharm G, Lepka D, Faber F, Hofmann J, Kerrinnes T, Skiebe E. A simple and rapid method of bacterial transformation. J Microbiol Methods. 2010 Feb;80(2):215-6. doi: 10.1016/j.mimet.2009.12.002. PMID: 20004690.
    29. Rodríguez-Beltrán J, Elabed H, Gaddour K, Blázquez J, Rodríguez-Rojas A. Simple DNA transformation in Pseudomonas based on the Yoshida effect. J Microbiol Methods. 2012 May;89(2):95-8. doi: 10.1016/j.mimet.2012.02.013. Epub 2012 Mar 3. PMID: 22405834.
    30. Mincea M, Negrulescu A, Ostafe V. Preparation, modification, and applications of chitin nanowhiskers: a review. Rev Adv Mater Sci. 2012;30:225-242.
    31. Mendes GP, Vieira PS, Lanceros-Méndez S, Kluskens LD, Mota M. Transformation of Escherichia coli JM109 using pUC19 by the Yoshida effect. J Microbiol Methods. 2015 Aug;115:1-5. doi: 10.1016/j.mimet.2015.05.012. Epub 2015 May 9. PMID: 25966644.
    32. Elabed H, Hamza R, Bakhrouf A, Gaddour K. Rapid DNA transformation in Salmonella Typhimurium by the hydrogel exposure method. J Microbiol Methods. 2016 Jul;126:67-71. doi: 10.1016/j.mimet.2016.04.017. Epub 2016 May 3. PMID: 27154729.
    33. Castro-Smirnov FA, Piétrement O, Aranda P, Bertrand JR, Ayache J, Le Cam E, Ruiz-Hitzky E, Lopez BS. Physical interactions between DNA and sepiolite nanofibers, and potential application for DNA transfer into mammalian cells. Sci Rep. 2016 Nov 3;6:36341. doi: 10.1038/srep36341. PMID: 27808269; PMCID: PMC5093858.
    34. Ren J, Karna S, Lee HM, Yoo SM, Na D. Artificial transformation methodologies for improving the efficiency of plasmid DNA transformation and simplifying its use. Appl Microbiol Biotechnol. 2019 Dec;103(23-24):9205-9215. doi: 10.1007/s00253-019-10173-x. Epub 2019 Oct 24. PMID: 31650193.
    35. González-Tortuero E, Rodríguez-Beltrán J, Radek R, Blázquez J, Rodríguez-Rojas A. Clay-induced DNA breaks as a path for genetic diversity, antibiotic resistance, and asbestos carcinogenesis. Sci Rep. 2018 May 31;8(1):8504. doi: 10.1038/s41598-018-26958-5. PMID: 29855603; PMCID: PMC5981458.
    36. Piétrement O, Castro-Smirnov FA, Le Cam E, Aranda P, Ruiz-Hitzky E, Lopez BS. Sepiolite as a New Nanocarrier for DNA Transfer into Mammalian Cells: Proof of Concept, Issues and Perspectives. Chem Rec. 2018 Jul;18(7-8):849-857. doi: 10.1002/tcr.201700078. Epub 2017 Dec 29. PMID: 29286197.
    37. Ren J, Lee H, Yoo SM, Yu MS, Park H, Na D. Combined chemical and physical transformation method with RbCl and sepiolite for the transformation of various bacterial species. J Microbiol Methods. 2017 Apr;135:48-51. doi: 10.1016/j.mimet.2017.02.001. Epub 2017 Feb 7. PMID: 28185866.
    38. Kumari M, Pandey S, Mishra A, Nautiyal CS. Finding a facile way for the bacterial DNA transformation by biosynthesized gold nanoparticles. FEMS Microbiol Lett. 2017 Jul 3;364(12). doi: 10.1093/femsle/fnx081. PMID: 28927194.
    39. Castro-Smirnov FA, Piétrement O, Aranda P, et al. Biotechnological applications of the sepiolite interactions with bacteria: bacterial transformation and DNA extraction. Appl Clay Sci. 2020;191:105613.
    40. Mendes GP, Kluskens LD, Lanceros-Méndez S, Mota M. Magnesium aminoclays as plasmid delivery agents for non-competent Escherichia coli JM109 transformation. Appl Clay Sci. 2021;204:106010.
    41. Mendes GP, Kluskens LD, Mota M, Lanceros-Méndez S, Hatton TA. Spherical and needle-shaped magnetic nanoparticles for friction and magnetic stimulated transformation of microorganisms. Nano-Struct Nano-Objects. 2021;26:100732.
    42. Ragu S, Piétrement O, Lopez BS. Binding of DNA to natural sepiolite: applications in biotechnology and perspectives. Clays Clay Miner. 2021;69:633-640.
    43. Sheridan PO, Odat MA, Scott KP. Establishing genetic manipulation for novel strains of human gut bacteria. Microbiome Res Rep. 2023 Jan 3;2(1):1. doi: 10.20517/mrr.2022.13. PMID: 38059211; PMCID: PMC10696588.
    44. Biddeci G, Spinelli G, Colomba P, Di Blasi F. Halloysite Nanotubes and Sepiolite for Health Applications. Int J Mol Sci. 2023 Mar 2;24(5):4801. doi: 10.3390/ijms24054801. PMID: 36902232; PMCID: PMC10003602.
    45. Enju S, Uehara S, Inoo T. Polygonal serpentine and chrysotile in the Kurosegawa Belt, Kyushu, Japan. Can J Min Pet. 2023;61:145-166.
    46. Somiya Y, Higo N, Yoshida N. Combination of rolling vibration and serpentinite induces the formation of penetration-intermediates. Geomicrobiol J. 2012;29:820-829.
    47. Perron JT, Mitrovica JX, Manga M, Matsuyama I, Richards MA. Evidence for an ancient martian ocean in the topography of deformed shorelines. Nature. 2007 Jun 14;447(7146):840-3. doi: 10.1038/nature05873. PMID: 17568743.
    48. Váci Z, Agee CB, Herd CD, et al. Hydrous olivine alteration on Mars and Earth. Meteorit Planet Sci. 2020;55:1011-1030.
    49. Sánchez-García L, Carrizo D, Jiménez-Gavilán P, Ojeda L, Parro V, Vadillo I. Serpentinization-associated travertines as spatio-temporal archives for lipid biomarkers key for the search for life on Mars. Sci Total Environ. 2024 Feb 20;912:169045. doi: 10.1016/j.scitotenv.2023.169045. Epub 2023 Dec 5. PMID: 38061658.
    50. Jiang Z, Liu Q, Roberts AP, Dekkers MJ, Barrón V, Torrent J, Li S. The magnetic and color reflectance properties of hematite: from Earth to Mars. Rev Geophys. 2022;60
    51. Sleep NH. Martian plate tectonics. J Geophys Res Planets. 1994;99(E3):5639-5655.
    52. Nunn C, Garcia RF, Nakamura Y, et al. Lunar seismology: a data and instrumentation review. Space Sci Rev. 2020;216:89.
    53. Osinski GR, Cockell CS, Pontefract A, Sapers HM. The Role of Meteorite Impacts in the Origin of Life. Astrobiology. 2020 Sep;20(9):1121-1149. doi: 10.1089/ast.2019.2203. Epub 2020 Sep 1. PMID: 32876492; PMCID: PMC7499892.

Similar Articles

Investigation of Lateral Vibrations in Turbine-generator Unit 5 of the Inga 2 Hydroelectric Power Plant
André Mampuya Nzita, Edmond Phuku Phuati, Robert Muanda Ngimbi, Guyh Dituba Ngoma and Nathanaël Masiala Mavungu
DOI10.61927/igmin173
Qualitative Model of Electrical Conductivity of Irradiated Semiconductor
Temur Pagava, Levan Chkhartishvili, Manana Beridze, Darejan Khocholava, Marina Shogiradze and Ramaz Esiava
DOI10.61927/igmin166
Evaluating Digital Imaging Technologies for Anogenital Injury Documentation in Sexual Assault Cases
Jon Giolitti, Abbigail Behmlander, Sydney Brief, Emma Dixon, Sydney Hudock, Linda Rossman, Stephanie Solis, Meredith Busman, Lisa Ambrose, Lindsey Ouellette and Jeffrey Jones
DOI10.61927/igmin246

Social Icons

PUBLISH YOUR RESEARCH

We publish a wide range of article types in biology, medicine and engineering with no editorial biases.

Submit

See Manuscript Guidelines and APC

Explore the IgMin Subjects
Google Scholar
welcome Image

Google Scholar, beta-launched in November 2004, acts as an academic navigator through vast scholarly seas. It covers peer-reviewed journals, books, conference papers, theses, dissertations, preprints, abstracts, technical reports, court opinions, and patents. Search IgMin Articles