Subjects Content

Welcome to IgMin Research - A BioMed & Engineering Open Access Journal, your gateway to a diverse world of scientific exploration and innovation. We proudly stand at the forefront of scholarly dissemination, bringing together the realms of Biology, Medicine and Engineering under a single umbrella. With a commitment to open access and knowledge democratization, we aim to empower researchers, scholars, and enthusiasts across the globe to explore, contribute, and collaborate.

Biology

Explore the intricate world of living organisms through disciplines such as Zoology, Histology, and Microbiology. Immerse yourself in the complexities of genomics and molecular biology, uncover the mysteries of taxonomic systems, and delve into the world of human biology. Venture into the realms of chemistry, from Organic Chemistry to Physical Chemistry, and explore the delicate balances of Earth's ecosystems through Atmospheric Science and Ecology....

Medicine

Discover the intricacies of the human body and its ailments through the prism of Medical Sciences. Journey through disciplines like Physiology, Pharmacology, and Anatomy, and explore the frontiers of Molecular Medicine and Immunology. Engage in the discourse on Clinical Trials and Health Economics, and unravel the complexities of Pain Management and Infectious Diseases.

Engineering

Immerse yourself in the realm of engineering marvels, from Control Engineering and Power Engineering to Materials Engineering and Mechanical Engineering. Uncover the mysteries of Signal Processing and delve into the precision of Instrumentation. Navigate the world of Automation and Artificial Intelligence, and witness the convergence of disciplines in Mechatronics Engineering and Biomedical Engineering.

General Science

Explore the complexities of the natural world through the lens of General Science. Delve into fields like Physics, Chemistry, Biology, and Earth Sciences, and examine cutting-edge topics in Environmental Science and Engineering. Engage in discussions on scientific innovations and the impact of research on society and health.

Members Content

Our aim is to build bridges between fields to strengthen the pace of scientific advancements.

Articles Content

Our aim is to build bridges between fields to strengthen the pace of scientific advancements.

Explore Content

Our aim is to build bridges between fields to strengthen the pace of scientific advancements.

Identify Us

Our aim is to build bridges between fields to strengthen the pace of scientific advancements.

Search

Explore Section

Content for the explore section slider goes here.

135 of 156
Evaluating Digital Imaging Technologies for Anogenital Injury Documentation in Sexual Assault Cases
Jon Giolitti, Abbigail Behmlander, Sydney Brief, Emma Dixon, Sydney Hudock, Linda Rossman, Stephanie Solis, Meredith Busman, Lisa Ambrose, Lindsey Ouellette and Jeffrey Jones
Abstract

Abstract at IgMin Research

Our aim is to build bridges between fields to strengthen the pace of scientific advancements.

General-science Group Review Article Article ID: igmin247

Use of Extraterrestrial Resources and Recycling Water: Curb Your Enthusiasm

Educational Science Affiliation

Affiliation

    1445 Indiana Ave., South Pasadena, CA 91030, USA

Abstract

The NASA approach for technology development for missions is to (1) wait for a mission need, and (2) upgrade the technology available at that time, however inadequate. 
This is illustrated with two important NASA technologies: in situ resource utilization (ISRU) and recycling wastewater. It also serves as a review with 49 references provided. 
NASA funding for ISRU has been sporadic and minimal, probably because no mission was being implemented that used ISRU. The state of the technology remains underdeveloped. For example, CO2 in the Mars atmosphere supplies carbon and oxygen. However, we still do not have a viable system to acquire CO2 and compress it with acceptable power requirements and adequate lifetime.
NASA technology for recycling wastewater was developed for the International Space Station. It requires frequent attention with replenishment and replacement of subsystems. This system appears to be inadequate for Mars missions and there is no evidence that NASA has a viable plan to fix that.

Figures

References

    1. Ash RL, Dowler WL, Varsi G. Feasibility of rocket propellant production on Mars. Acta Astronaut. 1978;5:705-724.
    2. Sanders G, Kleinhenz J. In situ resource utilization (ISRU) strategy—scope, plans, and priorities. In: Proceedings of the NASA Advisory Council (NAC) Technology Innovation and Engineering Committee; 2023; Washington, DC, USA.
    3. Sanders G, Kleinhenz J, Linne D. NASA plans for in situ resource utilization (ISRU) development, demonstration, and implementation. Presentation to COSPAR; 2022. Available from: https://ntrs.nasa.gov/api/citations/20220008799/downloads/NASA%20ISRU%20Plans_Sanders_COSPAR-Final.pdf
    4. Rapp D. Human missions to Mars. 3rd ed. Heidelberg, Germany: Springer-Praxis Books; 2023.
    5. Rapp D. Use of extraterrestrial resources for human space missions to Moon or Mars. 2nd ed. Heidelberg, Germany: Springer-Praxis Books; 2018.
    6. Zubrin R, Price S, Mason L, Clark L. Report on the construction and operation of a Mars in-situ propellant production unit. AIAA-94-2844. Available from: https://marspapers.org/paper/Zubrin_1994.pdf
    7. Clark DL. In-situ propellant production on Mars: a Sabatier/electrolysis demonstration plant. In: Proceedings of the 33rd Joint Propulsion Conference and Exhibit; 1997 Jul 6–9; Seattle, WA, USA. AIAA 97-2764.
    8. Clark DL, Payne K. CO2 collection and purification system for Mars. AIAA 2001-4660. Las Vegas, NV, USA; 2001.
    9. Zubrin RM, Muscatello AC, Berggren M. Integrated Mars in situ propellant production system. J Aerosp Eng. 2013;26:43–56.
    10. Abbud-Madrid A. Space Resources Roundtable. Available from: https://www.lpi.usra.edu/publications/absearch/?keywords_all=roundtable+vii&num=100
    11. Hoffman JA, Hecht MH, Rapp D, Hartvigsen JJ, SooHoo JG, Aboobaker AM, et al. Mars Oxygen ISRU Experiment (MOXIE)-Preparing for human Mars exploration. Sci Adv. 2022 Sep 2;8(35):eabp8636. doi: 10.1126/sciadv.abp8636. Epub 2022 Aug 31. PMID: 36044563; PMCID: PMC9432831.
    12. Hecht M, Hoffman J, Rapp D, Joseph J, Hartvigsen JG, SooHoo A, Aboobaker AM, et al. Mars oxygen ISRU experiment (MOXIE). Space Sci Rev. 2021;9:217.
    13. Rapp D, Hoffman J, Meyen F, Hecht M. The Mars oxygen ISRU experiment (MOXIE) on the Mars 2020 Rover. Paper presented at: AIAA Space2015 Conference and Exhibition; 2015 Aug 31; Pasadena, CA.
    14. Rapp D, Hinterman E. Adapting a Mars ISRU system to the changing Mars environment. Space: Science and Technology. 2023;3: 0041. DOI: 10.34133/space.0041.
    15. Clark DL, Payne KS, Trevathan JR. Carbon dioxide collection and purification system for Mars. AIAA 2001-4660. AIAA Space 2001 Conference and Exposition; 2001; Albuquerque, NM.
    16. Muscatello A, Devor R, Captain J. Atmospheric processing module for Mars propellant production. In: Earth and Space 2014; St. Louis, MO. Available from: https://ntrs.nasa.gov/search.jsp?R=20150001478
    17. Shah M. CO2 freezer testing. Available from: https://tfaws.nasa.gov/wp-content/uploads/3_ISRU-CO2-Freezer-for-TFAWS-2018.pdf
    18. Meier AJ, Grashik MD, Shah MG, Sass J, Bayliss J, Hintze P. et al. Full-scale CO2 freezer project developments for Mars atmospheric acquisition. In: AIAA Space Forum; 2018 Sep 17–19; Orlando, FL.
    19. Brooks KP, Rassat SD, TeGrotenhuis WE. Development of a microchannel ISPP system. PNNL Report, PNNL-15456; 2005.
    20. Merrell RC. Microchannel ISPP as an enabling technology for Mars architecture concepts. AIAA 2007-6055; 2007.
    21. Linne DL, Gaier JR, Zoeckler JG, Kolacz JS. Demonstration of critical systems for propellant production on Mars for science and exploration missions. In: AIAA 2013-0587; 2013.
    22. Elliott J, Austin A, Colaprete T. ISRU in support of an architecture for a self-sustained lunar base. Paper presented at: 2019 70th International Astronautical Congress (IAC); 2019 Oct 21–25; Washington, DC, USA.
    23. Kleinhenz JE, Paz A. Case studies for lunar ISRU systems utilizing polar water. ASCEND; 2020 Nov 16–19. Available from: https://ntrs.nasa.gov/api/citations/20205007966/downloads/PolarWaterISRUstudy_Kleinhen
    24. Rapp D. Near term NASA Mars and lunar in situ propellant production (ISPP): complexity vs. simplicity. Space Sci Technol. 2024.
    25. Rapp D. The value of utilization of extraterrestrial resources for propellant production for space exploration—a perspective. Acad J Engrg Studies. 2024;3(4).
    26. Thomas G, Granger M, Csank J, Gardner B. Establishing a lunar surface power grid. In: 2022 Conference on Advanced Power Systems for Deep Space Exploration (APS4DS); 2022 Aug 30.
    27. Kleinhenz J, Collins J, Barmatz M, Voecks G, Hoffman S. ISRU technology development for extraction of water from the Mars surface. NASA presentation; 2022. Available from: https://ntrs.nasa.gov/api/citations/20180005542/downloads/20180005542.pdf
    28. Sanders G, Duke M. In-situ resource utilization (ISRU) capability roadmap progress review; 2005. Available from: https://ntrs.nasa.gov/api/citations/20050205045/downloads/20050205045.pdf
    29. Sanders G. Results from the NASA capability roadmap team for in-situ resource utilization (ISRU); 2005. Available from: http://www.marsjournal.org/contents/2006/0005/files/SandersDuke2005.pdf
    30. Rucker M. NASA’s Strategic Analysis Cycle 2021 (SAC21) Human Mars Architecture. NASA Report; 2021. Available from: https://ntrs.nasa.gov/citations/20210026448
    31. Rucker M. NASA’s Strategic Analysis Cycle 2021 (SAC21) Human Mars Architecture. NASA ESDMD Mars Architecture Team; 2022 Mar 7; IEEE Aerospace Conference; Big Sky, MT.
    32. Drake BG. Mars design reference architecture 5.0 study - executive summary. Available from: https://www.nasa.gov/wp-content/uploads/2015/09/373669main_2008-12-04_mars_dra5_executive_summary-presentation.pdf?emrc=db5841
    33. NASA’s plan for sustained lunar exploration and development. NASA web publication; 2020. Available from: https://www.nasa.gov/wpcontent/uploads/2020/08/a_sustained_lunar_presence_nspc_report4220final.pdf?emrc=5aa8ef
    34. Zubrin R. Lunar Gateway or Moon Direct? Space News; 2019. Available from: https://spacenews.com/op-ed-lunar-gateway-or-moondirect/
    35. Using space-based resources for deep space exploration. NASA announcement; 2023. Available from: https://www.nasa.gov/overview-in-situ-resource-utilization/
    36. NASA invites stakeholders to STMD’s LIFT-1 industry forum. NASA announcement; 2023. Available from: https://www.nasa.gov/general/stmd-lift-1-industry-day/
    37. Sanders G. NASA Lunar ISRU strategy. Presented at: What Next for Space Resource Utilization? Workshop; 2019 Oct 10; Luxembourg.
    38. Araghi K. NASA Lunar ISRU overview. Presentation to Korean Institute of Geoscience and Mineral Resources (KIGAM) ISRU Workshop; 2022 May 3.
    39. Rapp D. Mars ascent propellants and life support resources—take it or make it? IgMin Res. 2024 Jul 29;2(7):673-82. IgMin ID: igmin232; DOI: 10.61927/igmin232. Available from: igmin.link/p232
    40. Bagdigian RM, Dake J, Gentry G, Gault M. International Space Station environmental control and life support system mass and crew time utilization in comparison to a long duration human space exploration mission. In: 45th International Conference on Environmental Systems; 2015; Seattle, WA. Paper ICES-2015-094.
    41. Jones HW. Life support with failures and variable supply. In: 40th International Conference on Environmental Systems; 2010; Barcelona, Spain.
    42. Jones HW. Developing reliable life support for Mars. In: 47th International Conference on Environmental Systems; 2017 Jul 16–20; Charleston, SC. Paper ICES-2017-84.
    43. Broyan JL, et al. NASA environmental control and life support technology development for exploration: 2020 to 2021 overview. In: 50th International Conference on Environmental Systems; 2021. Paper ICES-2021-384.
    44. Jones HW. The recent large reduction in space launch cost. In: 48th International Conference on Environmental Systems; 2018 Jul 8–12; Albuquerque, NM. Paper ICES-2018-81.
    45. Jones HW. Take material to space or make it there? In: 2023 ASCEND Conference; 2023; Las Vegas, NV.
    46. Owens AC, Jones CA, Cirillo W, Klovstad J, Judd E, et al. Integrated trajectory, habitat, and logistics analysis and trade study for human Mars missions. ASCEND 2020; 2020; Virtual.
    47. Owens AC, Cirillo WM, Piontek N, Stromgren C, Cho J. Analysis and optimization of test plans for advanced exploration systems reliability and supportability. In: 50th International Conference on Environmental Systems; 2021. Paper ICES-2020-199.
    48. Maxwell AJ, Wilhite A, Ho K. Spare strategy analysis for life support systems for human space exploration. J Spacecraft Rockets. 2021;58(5):1-12. DOI: 10.2514/1.A34849.

Similar Articles

Association and New Therapy Perspectives in Post-Stroke Aphasia with Hand Motor Dysfunction
Shuo Xu, Chengfang Liang, Shaofan Chen, Zhiming Huang and Haoqing Jiang
DOI10.61927/igmin141
EB Naevi-like Lesion in Infant Bullous Pemphigoid
Laura Serpa, Haizza Monteiro, Maria de Oliveira Buffara, Raíssa Rodriguez, Ana Luisa Alves, Viviane Maria Maiolini and Elisa Fontenelle*
DOI10.61927/igmin201

Social Icons

PUBLISH YOUR RESEARCH

We publish a wide range of article types in biology, medicine and engineering with no editorial biases.

Submit

See Manuscript Guidelines and APC

Explore the IgMin Subjects
Google Scholar
welcome Image

Google Scholar, beta-launched in November 2004, acts as an academic navigator through vast scholarly seas. It covers peer-reviewed journals, books, conference papers, theses, dissertations, preprints, abstracts, technical reports, court opinions, and patents. Search IgMin Articles