stem3.jpg
Abstract

Abstract at IgMin Research

Our mission is to foster interdisciplinary dialogue and accelerate the advancement of knowledge across a wide spectrum of scientific domains.

Designing a Compact High-precision Positioner with Large Stroke Capability for Nanoindentation Devices

Affiliation

Affiliation

    Department of Civil and Mechanical Engineering, Purdue University, Fort Wayne, IN 46805, USA

Abstract

A new design of a fine positioner or high precision driven unit with a large positioning range is proposed for a custom-made in-situ indenter device equipped inside an SEM chamber. The design configuration of the proposed system is size-effective for the confined working area of the SEM chamber. The indentation depths can be precisely varied by controlling the fine positioner driven by a piezoelectric actuator. The main goal is to achieve very deep penetrations toward the bottom layers of tall or large-size scale specimens by single indentation, without the need for sequential indentations. Thus, the proposed design can eliminate the need for sequential adjustments of the specimen position with respect to the indenter tip as currently being practiced by the researchers. The specimen position adjustment after each indentation heavily depends on the coarse positioner and its accuracy level in a sub-millimeter regime which could result in position errors and unwanted lateral forces in the nanoindentation process. Therefore, the sequential indentations technique could lead to considerable variations in the outcomes of nanoindentation tests done on similar specimens. The proposed design will be realized to deploy in the Continuous Stiffness Measurement (CSM) techniques generally used to evaluate elastic properties as a function of continuous penetration depth with high-frequency loading and unloading cycles.

Figures

References

    1. Oliver DJ, Bradby JE, Williams JS, Swain MV, Munroe P, Journal of Applied Physics. 2009; 105:126101.
    2. Mohammad T, Salisbury SP. An improved stiffness model for piezo-actuated complementary clamp flexures International Journal of Mechatronics and Automation. 2012; 2:4.
    3. Mohammad T, Salisbury SP. Design and Assessment of a Z-Axis Precision Positioning Stage with Centimeter Range Based on a Piezoworm Motor, in IEEE/ASME Transactions on Mechatronics. 2015; 20:5; 2021-2030.
    4. Nowak JD, Malyska KA, Major RC, Warren OL, Michler J. Mater. Today. 2009; 12:44.
    5. Ghisleni R, Rzepiejewska-Malyska K, Philippe L, Schwaller P, Michler J. In situ SEM indentation experiments: instruments, methodology, and applications. Microsc Res Tech. 2009 Mar;72(3):242-9. doi: 10.1002/jemt.20677. PMID: 19140164.
    6. Li Y, Kim HI, Wei B, Kang J, Choi JB, Nam JD, Suhr J. Understanding the nanoscale local buckling behavior of vertically aligned MWCNT arrays with van der Waals interactions. Nanoscale. 2015 Sep 14;7(34):14299-304. doi: 10.1039/c5nr03581c. PMID: 26242771.
    7. Maschmann MR, Zhang Q, Wheeler R, Du F, Dai L, Baur J. In situ SEM observation of column-like and foam-like CNT array nanoindentation. ACS Appl Mater Interfaces. 2011 Mar;3(3):648-53. doi: 10.1021/am101262g. Epub 2011 Mar 2. PMID: 21366265.
    8. Maschmann MR, Zhang Q, Wheeler R, Du F, Dai L, Baur J. In situ SEM observation of column-like and foam-like CNT array nanoindentation. ACS Appl Mater Interfaces. 2011 Mar;3(3):648-53. doi: 10.1021/am101262g. Epub 2011 Mar 2. PMID: 21366265.
    9. Treacy MJ, Ebbesen TW, Gibson JM. Nature. 1996; 381:6584.
    10. Panzer MA, Zhang G, Mann D, Hu X, Pop E, Dai H. Heat Transfer. 2008; 130:5.
    11. Yaglioglu O, Hart J, Martens R, Slocum A. Rev. Sci. Instrum. 2006; 77:9.
    12. Shen ZL, Dodge MR, Kahn H, Ballarini R, Eppell SJ. Stress-strain experiments on individual collagen fibrils. Biophys J. 2008 Oct;95(8):3956-63. doi: 10.1529/biophysj.107.124602. Epub 2008 Jul 18. PMID: 18641067; PMCID: PMC2553131.
    13. Cao A, Dickrell PL, Sawyer WG, Ghasemi-Nejhad MN, Ajayan PM. Super-compressible foamlike carbon nanotube films. Science. 2005 Nov 25;310(5752):1307-10. doi: 10.1126/science.1118957. PMID: 16311330.
    14. APF710 actuator manual. https://www.thorlabs.com/drawings/a5af8e2a348979c1- E33CCEFE-CABF-3FDB-3F3B6B8FEC9B1420/APF710-Manual.pdf
    15. Svensson RB, Hassenkam T, Hansen P, Peter Magnusson S. Viscoelastic behavior of discrete human collagen fibrils. J Mech Behav Biomed Mater. 2010 Jan;3(1):112-5. doi: 10.1016/j.jmbbm.2009.01.005. Epub 2009 Feb 3. PMID: 19878908.
    16. Shen ZL, Dodge MR, Kahn H, Ballarini R, Eppell SJ. Stress-strain experiments on individual collagen fibrils. Biophys J. 2008 Oct;95(8):3956-63. doi: 10.1529/biophysj.107.124602. Epub 2008 Jul 18. PMID: 18641067; PMCID: PMC2553131.
    17. Maschmann MR, Zhang Q, Wheeler R, Du F, Dai L, Baur J. In situ SEM observation of column-like and foam-like CNT array nanoindentation. ACS Appl Mater Interfaces. 2011 Mar;3(3):648-53. doi: 10.1021/am101262g. Epub 2011 Mar 2. PMID: 21366265.
    18. Maschmann MR, Zhang Q, Wheeler R, Du F, Dai L, Baur J. In situ SEM observation of column-like and foam-like CNT array nanoindentation. ACS Appl Mater Interfaces. 2011 Mar;3(3):648-53. doi: 10.1021/am101262g. Epub 2011 Mar 2. PMID: 21366265.
    19. Tong T, Zhao Y, Delzeit L, Kashani A, Meyyappan M, Majumdar A. Height independent compressive modulus of vertically aligned carbon nanotube arrays. Nano Lett. 2008 Feb;8(2):511-5. doi: 10.1021/nl072709a. Epub 2008 Jan 12. PMID: 18189439.
    20. Ruoff RS, Tersoff J, Lorents DC, Subramoney S, Chan B, Nature. 1993; 367:6437.
    21. Bedewy M, Meshot E, Guo H, Verplogen E, Lu W. Phys. Chem. 2009; 111:16.
    22. Huang H, Zhao H, Mi J, Yang J, Wan S, Xu L, Ma Z. AIP Advances. 2012; 2:012104.
    23. Nalla RK, Stölken JS, Kinney JH, Ritchie RO. Fracture in human cortical bone: local fracture criteria and toughening mechanisms. J Biomech. 2005 Jul;38(7):1517-25. doi: 10.1016/j.jbiomech.2004.07.010. PMID: 15922763.
    24. Poissant J, Barthelat R. Exp. Mech. 2012; 52:9.
    25. Hulmes DJ, Wess TJ, Prockop DJ, Fratzl P. Radial packing, order, and disorder in collagen fibrils. Biophys J. 1995 May;68(5):1661-70. doi: 10.1016/S0006-3495(95)80391-7. PMID: 7612808; PMCID: PMC1282067.
    26. Huan Y, Liu D, Yang R, Zhang T. Measurement. 2010; 43:1090.

Similar Articles

Exploring Upper Limb Kinematics in Limited Vision Conditions: Preliminary Insights from 3D Motion Analysis and IMU Data
Artemis Zarkadoula, Themistoklis Tsatalas, George Bellis, Paris Papaggelos, Evangelia Vlahogianni, Stefanos Moustos, Eirini Koukourava and Dimitrios Tsaopoulos
DOI10.61927/igmin138
Investigation of Lateral Vibrations in Turbine-generator Unit 5 of the Inga 2 Hydroelectric Power Plant
André Mampuya NzitaEdmond Phuku Phuati, Robert Muanda Ngimbi, Guyh Dituba Ngoma and Nathanaël Masiala Mavungu
DOI10.61927/igmin173