apc-adv.jpg
Abstract

Abstract at IgMin Research

Our mission is to foster interdisciplinary dialogue and accelerate the advancement of knowledge across a wide spectrum of scientific domains.

Homologous Series of Chemical Compounds in Three-component Systems (Aa+ – Bb+ – Cc–) and (Zn2+ - Ge4+ - P3-) in Generalized Form

Affiliation

Affiliation

    Ioffe Institute of the Russian Federation Academy of Sciences, Saint-Petersburg, Russia

Abstract

For the first time, a method for calculating formulas of homologous series of chemical compounds of the systems (Aa+ – Bb+ – Cc–) and {Zn2+ – Ge4+ – P3–} in a generalized form is presented. The calculation is confirmed by the literature experimentally obtained compounds: thirteen compounds of the system (Na+ – Ti4+ – O2–), seven – systems (Li+ – Ti4+ – O2–), five – systems (K+ – V5a+ –  – O2–), eight – systems (Ba2+ – Cu2+ – O2*). Homological series in (Aa+ – Bb+ – Cc–) have the following generalized form: A{t – k·r + nr – r)bcBracC{t – k·r + nr)ab and AtbcB{r – k·t + nt – t}acC (r – k·t + nt)ab.
In (Zn2+ – Ge4+ – P3–) systems for the m-group the formulas of homologous series, that develops towards Ge3P4, have the following generalized form: Zn6tGe(6r – 6kt + 6n – 6t)P(8r – 8kt + 8n)  and for αm-homologous series – Zn6Ge3nP4(n + 1). A method for calculating formulas of homologous series of chemical compounds in a generalized form can be used for any system of chemical elements.

Figures

References

    1. Fok VA. The beginning of quantum mechanics. Science. 1976.
    2. Roothaan CCJ. Rev. Mod. Phys. 1951; 23:2; 69. DOI:10.1103/RevModPhys.23.69
    3. Slater JC. Phys. Rev. 1051; 51:3;385.
    4. Undalov YK. Russian. Inorganic Chemistry. 1998; 43:1447.
    5. Undalov YK. Russian. Inorganic Chemistry. 1999; 44:1315.
    6. Undalov YK. Russian. Inorganic Chemistry. 1999; 44:1479.
    7. Undalov YК, Terukov EI, Agafonov DV. Izvestia of St. Petersburg State Institute of Technology (Technical University). 2021; 59(85):26. DOI:10.36807/1998-9849-2021-59-85-26-36
    8. Eriemin EN. Fundamentals of chemical kinetics. Visshaia Shkola. 1976.
    9. Urusov VS. Theoreticalcrystal chemistry. Moscow State University. 1987.
    10. Kovba LM. Stoichiometry, defects in crystals and structural homology. Chemistry. 1996.
    11. Butlerov A. On the chemical structure of substances. Scientific notes of Kazan University. (Dep. Physical, mathematical and medical sciences). 1862; 1:1;1.
    12. Klinkova LA, Barkovskii NV, Fedotov VK. Physica C: Superconductivity. 2010; 470:206. https://doi.org/1016/j.physc.2010.09.013
    13. Gay PL, Rao CNR. Z Naturforsch. 1975; 30a:8;1092. https://doi.org/1515/zna-1975-0831
    14. Li Z, Guo W, Zhang NN. APL Matereals. 2020; 8:091112. DOI: 10.1063/5.0018934
    15. Drennan J, Tavares CP, Steele BCH. Mater. Res. Bull. 1982; 17:5;621. https://doi.org/1016/0025-5408(82)90044-7
    16. Savchenko VF, Lyubkina IY. Russian. Inorganic Chemistry. 1986; 2:1483.
    17. Bykova T, Dubrovinsky L, Dubrovinskaia N. Nature Communication. 2016; 10661: https://doi.org/10.1038/neomms10661
    18. Ruddbesden SN, Popper P.Acta Crystall. 1958; 11:1;54. https://doi.org/10.1107/S0365110X58000128
    19. Beznosikov VV. Structural Chem. 1991; 32:3.
    20. Magneli A, Blomberg B, Kihlborg H. Acta chem. scand. 1955; 9:8;1382. https://doi.org/10.3891/acta.chem.scand.09-1382
    21. Andersson S, Collen B, Kuylenstierna U. Acta chem. scand. 1957; 11:10; 1641. https://doi.org/10.3891/acta.chem.scand.11-1641
    22. Andersson S. Acta chem. scand. 1954; 8:9;1599. https://doi.org/10.3891/acta.chem.scand.08-1599
    23. Gado P, Holmberg B, Magneli A.Acta chem. scand. 1965; 19:8;2010. https://doi.org/10.3891/acta.chem.scand.19-2010
    24. Du MH. J Materials Chemistry C. 2019; 7:19;5710. https://doi.org/10.1039/C9TC00197B
    25. Zhang S, Xie LH, Ouyang SD. Phys. Scr. 2016; 91:015801;6. DOI: 10.1088/0031-8949/91/1/015801
    26. El-Naggar IM, Mowafy E. Adsorption. 2002; 87:3;225.
    27. Wefer K. Naturwissenschaften. 1967; 54:1:18.
    28. Bando Y, Watab=nabe M, Sekikawa Y. Acta. Cryst. 1979; B35:1541.
    29. Bamberger C, Begun G. Am. Ceram. Soc. 1987; 70:3;48. DOI: 10.1111/J.1151-2916.1987.TB04963X
    30. Clearfield A, Lehto. Solid State Chem. 1988; 73:98.
    31. Dion M, Piffard Y, Tournoux M. Inorg. Nucl.Chem. 1978; 140:917.
    32. Wadsley AD, Mumme WG. Acta. Cryst. 1968; B24:392. DOI: 10.1107/S0567740868002426
    33. Bando Y. Acta. Cryst. 1982; A38:211. DOI: 10.1107/S0567739482000473
    34. Watanabe M, Bando Y, Tsatsum M. Solid State Chem. 1979; 28:3;397. DOI: 10.1016/0022-4596(79)90091-4
    35. Kataoka K, Takahashi Y, Kijima N, Ohshima K.Mater. Res. Bull. 2009; 44: N1; 168. DOI: 10.1016/j.materresbull.2008.03.015
    36. Luchinskii GP. Chemistry of titanium. Chemistry. 1971; 472 с.
    37. Yi T, Yang Z, XieY. Mater. Chem. 2015; 3:5750. DOI: 10.1039/c4ta06882c.
    38. Hawthorne FC, Calvo C. Solid State Chem. 1977;22: N1;157.
    39. Ogihara T, Kodera T. Matereals. 2013; 6:2285. DOI: 10.1039/ma6062285
    40. Fotiev АА, Slobodin BV, Hodos M.Ya. Vanadatiy. Nauka. 1988; 267s.
    41. An JN, Xu Y, Zhen L, Yuang YD. Ceram. International. 2010; 36:6; 1825. DOI: 10.1016/J.CERAMINT.2010.03.031
    42. Poulus EF, Miehe G, Fuess H, Yehia I. Solid State Chem. 1991; 90:1;17. DOI: 10.1016/0022-4596(91)90166-F
    43. Jiang XP,Huang JG, Yu Y. Supercond. Sci. Technol. 1988; 1:2;102. DOI: 10.1088/0953-2048/1/2/012
    44. Maeda M, Kadoi M, Ikeda T. Jpn. J. Appl. Phys. 1989; 28:8;1417. DOI:10.1143/JJAP.28.1417
    45. Zandbergen HW, Jansen J, Svetchnikov VL. Physica C: Superconductivity and its applications. 1999; 328:3-4;211. https://doi.org/10.1016/S021-4534(99)00537-7

Similar Articles