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Abstract

Energy Valley Optimizer (EVO) is one of the recent metaheuristic algorithms. It draws inspiration from advanced principles in physics related to particle stability 
and decay modes. Th is paper presents a new Energy Valley Optimizer (EVO) and levy fl ights that are hybrid to improve the EVO in solving optimization problems. 
Levy fl ight is one of the most important randomization techniques. Fift een mathematical test functions (fi ve unimodal functions, four multimodal functions, and six 
composite functions) are solved with the proposed algorithm. We also compare our results with previous results of metaheuristic algorithms. Th e statistical results 
show that the results of the Levy Energy Valley Optimizer (LEVO) outperform other algorithms in almost all mathematical test functions.

Introduction

Optimization algorithms may be divided into two 
categories: deterministic and stochastic algorithms. 
Deterministic algorithms don’t contain stochastic 
operators; they give the same answer if the initial start 
point is constant. On the contrary, stochastic algorithms 
give diff erent answers even if the initial start point is 
constant [1]. Metaheuristic algorithms are the most popular 
techniques for solving optimization problems. Natural 
phenomena inspire it. Such algorithms improved local 
optima solutions to reach global optima in search space [2]. 
The interested metaheuristic algorithms in the literature 
are Genetic Algorithms (GA) [3], Ant Colony Optimization 
(ACO) [4], Particle Swarm Optimization(PSO) [5], Artifi cial 
Bee Colony (ABC) Algorithm[6], Cuckoo Optimization 
Algorithm (COA) [7], Firefl y Algorithm (FA) [8], Grey Wolf 
Optimizer (GWO) [9], Equilibrium optimizer (EO) [10], 
Horse herd optimization algorithm (HOA) [11], drawer 
algorithm (DA) [12], Walrus Optimization Algorithm 
(WaOA) [13], and Energy Valley Optimizer (EVO). The EVO 
is considered one of the latest nature-inspired algorithms 
proposed in metaheuristic algorithms [1]. The Energy Valley 
Optimizer (EVO) [1] is a recently developed metaheuristic 
algorithm that draws inspiration from sophisticated ideas in 
physics pertaining to particle stability and decay modes. The 
idea of the EVO comes from the fundamental laws of how 
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particles decay through diff erent types of matter in physics. 
The Energy Valley Optimizer also includes an examination 
of the complexity of the test functions used and achieves 
excellent results. As mentioned before, metaheuristics have 
shown a positive infl uence on feature selection problems 
in recent years [14]. There is still a need for additional 
optimization strategies to achieve further improved results. 
Exploration means fi nding promising solutions by seeking 
various unknown regions, while exploitation improves over 
solutions obtained by exploration [15].

Levy fl ight is a class of random walks whose step lengths 
are not constant but are drawn from levy distribution, 
proposed by Paul Levy [16]. The foraging movements are 
observed to follow Levy distribution. Levy fl ight makes a 
large jump in random walks, and this allows the individual 
to visit new sites that the swarm has not visited, which leads 
to high exploration in search space [17,18].

So, this paper presents a new Energy Valley Optimizer 
(EVO) and levy fl ights that are hybrid to improve the EVO 
in solving optimization problems. The remainder of the 
paper is organized as follows: in section 2, the basic EVO 
is described in detail. The defi nition of Levy fl ight and Levy 
Energy Valley optimizer (LEVO) algorithm is presented in 
section 3. Section 4 gives the experimental results. Finally, 
section 5 provides the conclusions of this work.

https://crossmark.crossref.org/dialog/?doi=10.61927/igmin172&domain=pdf&date_stamp=2024-04-18
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Overview of the basic EVO

Main inspiration: The Energy Valley Optimizer (EVO) 
[1] is a new metaheuristic algorithm that has been utilized 
in engineering optimization issues. It is classifi ed within 
the category of physics-based approaches. EVO is inspired 
by the fundamental laws of how particles decay through 
diff erent types of matter in physics. The term “physical 
reaction” pertains to the process of inducing the collision 
of two particles or foreign subatomic particles, resulting 
in the formation of novel particles. It is thought that most 
particles are unstable, but some are stable and stay that way 
forever. The unstable particles give off  energy when they 
break apart, which is also known as decay. The total decay 
rate is diff erent for each type of particle. During the decay 
process, a particle undergoes a reduction in energy, with the 
surplus energy being emitted. The Energy Valley concept 
involves scrutinizing particle stability by analyzing binding 
energy and how the particles interact with each other. The 
central focus in this domain centers on determining particle 
stability, which is contingent on evaluating neutron (N) and 
proton (Z) quantities, as well as the N/Z ratio. An N/Z ratio 
approximately equal to 1 signifi es the particle is stable and 
light, whereas a higher N/Z value indicates stability in a 
heavier particle. Particles tend to enhance their stability by 
adjusting their neutron-to-proton (N/Z) ratio, gravitating 
towards the region of stability or the energy minimum, as 
illustrated in Figure 1A.

During the decay process, the emission of excessive 
energy results in the generation of a particle in a reduced 
energy state. The decay mechanism in particles exhibiting 
varying degrees of stability is determined by three distinct 
types of emissions. The alpha (α) particles are highly dense 
particles with a positive charge. Beta (β) particles are 
electrically charged particles that possess a negative charge. 
These particles can be described as electrons that exhibit 
greater velocities. Gamma (γ) rays are photons characterized 
by elevated energy levels, as depicted in Figure 1B. Based on 
the information provided regarding the emission process, it 
can be observed that there exist three distinct forms of decay, 
namely alpha, beta, and gamma decay, which are generated 
from the aforementioned emission kinds. Alpha decay is 
characterized by the emission of an alpha particle, leading 
to a decrease in both the neutron (N) and proton (Z) values 
and consequently reducing the N/Z ratio. Conversely, beta 
decay involves the emission of a β particle, posing a challenge 
to the N/Z ratio by reducing the number of neutrons (N) 
and increasing the number of protons (Z).In the process of 
gamma decay, the emission of a gamma (γ) photon from 
an excited particle is observed without any accompanying 
alteration in the N/Z values, as shown in Figure 1C. The EVO 
depends on the idea that diff erent particles decay over time. 
The method uses the particles’ tendency to reach a stable 

Figure 1: (A) particles stability band (B) Emission process (C) Th ree types of decay [1].

point as a starting point for improving the performance of 
the candidate solutions.

Mathematical formula: The fi rst phase involves the 
execution of the initialization procedure, during which the 
solution candidates (Pi) are conceptualized as particles that 
have varying degrees of stability inside the search space.



j1 2 dp p p p1 1 1 1P j1 2 d1 p p p p2 2 2 2P2
1, 2, , .

P ,
1, 2, , .Pi j1 2 dp p p p

Pn j1 2 dp p p pn n n n

i n
j d

i i i i


 

 
 



 
  
  
  
  
  
  
      

 

 
 




 
 

 
                    

(1)

   1, 2, , .j j j jp p rand p p ,   i i,  i,  i,  1, 2, , .
i n

min max min j d
 

   
            

(2)

The variable “n” represents the particle number within 
the search space. The variable “d” represents the problem 

dimension under consideration. 
jpi represents the j-th 

decision variable used to estimate the initial position of the 

i-th candidate. 
j pi,  max  and 

jpi,  min  are the upper and lower 

bounds of the j-th variable in the i-th candidate. The variable 
“rand” represents a random number that follows a uniform 
distribution inside the interval [0,1].

The second phase of the method involves determining the 
Enrichment Bound (EB) for the particles. This parameter is 
employed to accommodate variations between particles with 
a surplus of neutrons and particles with a defi cit of neutrons. 
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In order to accomplish this, the evaluation function is 
assessed for every particle, leading to the determination of 
the Neutron Enrichment Level (NEL) of these particles. The 
aforementioned elements are mathematically represented 
in the following manner:

 
NELi 1 iEB ,   i 1, 2, , n.
n

n                    (3)

The variable NELi represents a level of neutron 
enrichment for the i-th particle, while EB denotes particles 
that are the enrichment bound.

In the third phase, the estimation of particle stability 
values is conducted by evaluating the objective function.

NEL BSiSL ,     i 1, 2, , n.i WS BS


  


                   (4)

The stability value for the i-th particle is SLi, is 
determined based on the best (BS) and worst (WS) stability 
levels. These levels correspond to the lowest and highest 
objective function values discovered thus far. In the EVO’s 
main search loop, if a particle’s neutron enrichment level 
NELi surpasses the enrichment limit (EB), which implies 
that the particle has a higher neutron-to-proton (N/Z) ratio. 
Furthermore, alpha and gamma decays are anticipated to 
occur if the particle›s stability level SLi exceeds the stability 
bound (SB). This expectation stems from the likelihood of 
such decay in larger particles with elevated stability levels. 
In the physics of alpha decay (as illustrated in Figure 2). 
The decision variables present in the solution candidate 
are substituted by the rays within the particle or candidate 
exhibiting the highest level of stability, referred to as PBS. 
The mathematical representation of these is as follows:

    1, 2, , .j1 P P P p ,   BSi i i    .
i nNew

j Alpha Index II
 


                  (5)

Where 1 Pi
New  represents a newly produced particle 

within the search space, Pi is the current position vector of 
an i-th particle in search space. PBS is the particle’s position 
vector that has the highest level of stability, jpi  is the j-th 
decision variable.

In this context, the estimation of the total distance 
between the particle under consideration and other particles 
is performed using a method, and the nearest particle is 
selected for this purpose.

    2 2 1, 2, , .kD x x y y ,2 1 2 1i 1, 2, , 1.
i n

k n
 

   
                 (6)

The variable kDi  represents the overall distance 
separating the i-th particle from the k-th neighboring 
particle. The coordinates of the particles are denoted by (x1, 
y1) and (x2, y2).

The procedure of updating the position to generate the 
second solution candidate in this phase is carried out by 
employing the following actions:

    1, 2, , .j2 P P P p ,   Ngi i i    .
i nNew

j Gamma Index II
 




                  (7)

2 P  i
New is a newly generated particle 

Pi  is the current position vector of the i-th particle 

PNg is the position vector of the neighboring particle 
around the i-th particle

jpi   is the j-th decision variable or emitted ray.

Beta decay takes place in particles with lower stability 
levels, indicating less stability. According to the principles 
of physics for beta decay, illustrated in Figure 2, particles 
release β rays to enhance their stability. Given the instability 
of these particles, a signifi cant leap in the search space is 
necessary. In such cases, a procedure is employed to update 
the particle positions, involving controlled movements 
toward the particle or option with the best stability level 
(PBS) and the center of the particles (PCP). This aspect of the 
algorithm mimics the particles’ inclination to approach the 
stability band. Particles are situated near this band, and the 
majority of them exhibit higher stability (refer to Figure 1a 
and Figure 1b). These concepts are expressed as follows:

P1 iP , 1, 2, , .   CP n

n
i i n

                        (8)

 r P r PNew1 1 BS 2 CPP P ,   i 1, 2, , n.i i SLi

  
                   (9)

New1Pi the upcoming position vectors of i-th particles.Figure 2: Diff erent forms of decay [1].
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Pi the current position vectors of i-th particles.

PBS is the particle position vector of the optimal stability 
level.

PCP is the centre of the particle position vector

SLi is the level of stability for the i-th particle.

The parameters r1 and r2 represent two randomly 
generated integers within the range of [0, 1]. 

To make the algorithm better at exploitation and 
exploration, a diff erent process is used to update the positions 
of particles that use beta decay. This procedure entails 
guiding the particles systematically toward the particle with 
the optimal stability level (PBS) and a neighboring particle 
or candidate (PNg), ensuring that the movement is not 
infl uenced by particle stability level. These elements can be 
mathematically articulated as follows:

 2 P P r P r P ,     i 1, 2, , n.  Ng3 BS 4i i
New                 (10)

New2Pi  is the forthcoming position vectors of i-th 

particles.

Pi is i-th particles’ current position vectors. 

PBS is the particle position vector of the optimal stability 
value.

PNg is the neighbouring particle’s position vector around 
the i-th particle. 

The parameters r3 and r4 represent two randomly 
generated integers within the range of [0, 1]. 

When the neutron enrichment level (NELi) of a particle 
below the enrichment bound (EB), it is postulated that 
the particle possesses a reduced neutron-to-proton (N/Z) 
ratio. To approach the stability band, the particle has a 
tendency to either absorb electrons or emit positrons. In 
this context, a stochastic movement within the search space 
is characterized to accommodate these types of motions, 
expressed as follows:

 P P r ,   i 1, 2, , n. i i
New                         (11)

where NewPi  and Pi are the forthcoming and current 

position vectors of i-th particles. 

The parameter r represents a randomly generated integer 
within the range of [0, 1]. 

Description Energy Valley Optimizer (LEVO)

Concept of levy fl ight: Levy fl ight is a kind of random 

walk whose step length is not constant, but it is drawn from 
levy distribution. Levy distribution has infi nite variance 
and infi nite mean with power low step size [19,20]. Some 
animals and insects, such as ants, are following levy fl ight 
in walk-in foraging patterns [21]. Levy distribution is useful 
for stochastic algorithms. It has a role in exploration and 
exploitation [22]. Levy fl ight is expressed mathematically 
as:

0.01 1
x
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y 
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Where x and y are random numbers drawn from a 
normal distribution.
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The proposed levy EVO algorithm (LEVO): The 
proposed (LEVO) is the improved form of the original 
EVO, where hybrid EVO with levy fl ight. In Algorithm 1, the 
proposed algorithm is represented in simple form.

Experimental results and discussions

The results of fi fteen benchmark functions are presented 

 Algorithm 1
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in this section. These test functions can be classifi ed into 
three categories. The fi rst category, unimodal test functions, 
contains fi ve test functions. The second contains four 
functions of multimodal functions. The other six problems 
are composite test functions located in the last category. 
Tables 1-3 present the test function survey of each category. 
The proposed LEVO is compared with the basic Energy 
valley optimizer (EVO) [1] and recent algorithms such as 
Genetic Algorithms (GA) [3], Particle Swarm Optimization 
(PSO) [5], Firefl y Algorithm (FA) [8], states of matter search 
(SMS) [23], Bat algorithm (BA) [24], Flower pollination 
algorithm (FPA) [25], and Cuckoo search (CS) [26]. The 
proposed LEVO algorithm uses 30 candidate solutions 
(particles) over 1000 iterations. For each category, two 
tables are given. The fi rst table includes the values of the 
decision variable and the objective function of the best run 
out of 30 independent runs. The second table contains Ave 
and std. Ave is the mean of the optimal objective value 
calculated for 30 independent runs. Std is the standard 
deviation of optimal objective values Table 4.

Results on unimodal benchmark functions

The Unimodal function is the function that has a single 
optimum. Test functions are presented in Table 1. Table 5 
presents the best values of objective functions among 30 
independent runs and their corresponding decision variables 
(x’s). Statistical results are listed in Table 6. Results show 
that, on most test functions, the proposed LEVO algorithm 
gets better results than other algorithms.

Table 1: Unimodal test functions.
Test function domain Dim Fopt

  2x   1 ix = 1
n
iF   [-100,100] 30,200 0

  x    2 1ix = 1
n

i xi
nF i   [-10,10] 30,200 0

   13 x = 1
2

  in
iF x jj  [-100,100] 30,200 0

  max{ , 1 } =4 xF x i nii
  [-100,100] 30,200 0

   4x = 1 0,1    5F ix randoi mi
n   [-1.28, 1.28] 30,200 0

Table 2: Multimodal test functions.

Test function domain Dim Fopt

  sin( )  6 x = 1 F x xi i
n
i [-500,500] 30,200 -418.9829×Dima

  2 10 cos(2x = 1 ) 10]    7F x xn
ii i   

[-5.12, 
5.12]

30,200 0

  1
x exp(

1220exp( 0.2 ) cos(2 )) 201 18
n iF x x ei ii nn n

       [-32, 32] 30,200 0

  1 2 cos( ) 119 14000
x     

xn iiF xin i i
[-600,600] 30,200 0

Table 3: Composite test functions (mathematical formulation of the sphere, Ackley, 
Griewank, Weierstrass, Rastrigin illustrated in Table 4).

Test function Domain Dim FOPT

F10(CF1):

[-5, 5] 10 0
f1,f2,f3,……f10= Sphere Function

[σ1,σ2,σ3,… σ10] = [1,1,1,….,1]

[λ1,λ2,λ3,….,λ10=[5/100, 5/100, 5/100,…,5/100]

F11(CF2):

[-5, 5] 10 0
f1,f2,f3,……f10=Griewank's Function

[σ1,σ2,σ3,… σ10] = [1,1,1,….,1]

[λ1,λ2,λ3,….,λ10=[5/100, 5/100, 5/100,…,5/100]

F12(CF3):

[-5, 5] 10 0
f1,f2,f3,……f10=Griewank's Function

[σ1,σ2,σ3,… σ10]=[1,1,1,….,1]

[λ1,λ2,λ3,….,λ10=[1,1,1,….,1]

F13(CF4):

[-5, 5] 10 0

f1,f2 =Ackley's Function

f3,f4 =Rastrigin's Function

F5, f6 =Weierstrass Function

F7, f8=Griewank'sFunction

F9, f10=Sphere Function

[σ1,σ2,σ3,… σ10]=[1,1,1,….,1]

[λ1,λ2,λ3,….,λ10]=[5/32, 5/32, 1, 1, 5/0.5, 5/0.5, 5/100, 
5/100, 5/100, 5/100]

F14(CF5):

[-5, 5] 10 0

f1,f2=Rastrigin's Function

f3,f4=Weierstrass Function

F5, f6=Griewank's Function

F7, f8= Ackley's Function

F9, f10= Sphere Function

[σ1,σ2,σ3,… σ10]=[1,1,1,….,1]

[λ1,λ2,λ3,….,λ10]=[1/5, 1/5, 5/0.5, 5/0.5, 5/100, 5/100, 5/32, 
5/32, 5/100, 5/100]

F15(CF6):

[-5, 5] 10 0

f1,f2 =Rastrigin's Function

f3,f4 =Weierstrass Function

F5,f6 =Griewank'sFunction

F7, f8=Ackley's Function

F9,f10=Sphere Function

[σ1,σ2,σ3,… σ10]=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] 

[λ1,λ2,λ3,….,λ10]=[0.1* 1/5, 0.2 * 1/5, 0.3 * 5/0.5,0.4 * 
5/0.5,0.5 * 5/100, 0.6 * 5/100, 0.7 * 5/32, 0.8 * 5/32, 0.9 * 

5/100, 1 * 5/100]

Table 4: mathematical formulation of the basic functions in Table 3.

Name Formulation

Sphere   2
1 

Df x xii

Ackley   1 1220 exp 0.2 exp( cos(2 )) 201 1        
 
 
 

D Df x x x ei ii iD D

Griewank
1 2 cos( ) 11 1 4000

    
xD iD xii i i

Weierstrass 
kmax=20

( [ cos(2 ( 0.5))]) [ cos(2 0.5)] , 0.5,b 3,1 0 0      
k k k kD kmax kmaxa b x D a b ai k ki

Rastrigin 2( 10cos(2 ) 10)1   
D x xi ii
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Results on multimodal benchmark functions

The Multimodal function is a function that has more than 
one optimum in which there is a single global optimum. 
These test functions are presented in Table 2. Table 7 shows 
the results of the proposed LEVO on multimodal function; 
the average of the minimum value (ave) and their standard 
deviation (std) are presented in Table 8. It is clear that the 
LEVO algorithm has the best results in many test functions.

Results on composite benchmark functions

Composite benchmark functions are listed in Table 
3. Table 9 shows the results of composite functions using 
LEVO. The average (Ave) and their standard deviation (std) 
are presented in Table 10. Results show that the proposed 
LEVO algorithm outperforms other algorithms on the 
majority of the test functions.

The convergence curves of algorithms on some of the test 
functions are illustrated in Figure 3.

Table 5: Th e best values of objective functions of the LEVO algorithm on unimodal functions.

 
Values of the best variables 

F1  F2  F3  F4 F5

X1 -2.10E-07 -2.10E-08 2.60E-08 4.79E-09 -1.76E-04

X2 1.07E-07 1.07E-08 -9.08E-08 -1.88E-08 1.45E-06

X3 -2.22E-09 -2.22E-10 -3.63E-07 6.45E-08 1.06E-05

X4 -2.15E-08 -2.22E-10 8.78E-09 2.93E-07 4.92E-06

X5 -1.12E-07 -1.12E-08 4.61E-07 -2.33E-07 3.42E-06

X6 5.80E-08 5.80E-09 -2.07E-07 -5.14E-08 5.23E-05

X7 7.34E-08 7.34E-09 4.49E-08 -2.78E-08 -2.48E-07

X8 4.52E-08 4.52E-09 2.86E-08 1.48E-07 3.78E-06

X9 -4.38E-08 -4.38E-09 5.15E-08 9.03E-08 3.56E-05

X10 8.16E-08 8.16E-09 -1.25E-07 6.18E-08 -8.54E-06

X11 3.56E-07 3.56E-08 1.70E-07 -2.57E-08 -5.89E-06

X12 -8.56E-08 -8.56E-09 3.17E-08 -2.08E-07 1.57E-06

X13 -1.85E-07 -1.85E-08 -3.64E-09 3.83E-07 -4.95E-06

X14 -7.16E-08 -7.16E-09 -9.02E-08 3.31E-08 -1.09E-07

X15 1.06E-08 1.06E-09 4.12E-07 -1.56E-08 1.64E-05

X16 5.90E-08 5.90E-09 -1.08E-07 1.79E-07 -1.79E-05

X17 -6.90E-08 -6.90E-09 -7.99E-07 6.98E-08 -1.14E-05

X18 1.97E-07 1.97E-08 5.87E-07 -2.95E-07 2.07E-05

X19 -5.49E-08 -5.49E-09 1.10E-07 1.44E-07 6.74E-07

X20 -3.25E-07 -3.25E-08 1.15E-08 1.87E-07 -1.05E-05

X21 1.74E-07 1.74E-08 -6.86E-08 -1.51E-07 -2.55E-05

X22 -4.02E-07 -4.02E-08 9.02E-08 1.09E-07 3.26E-06

X23 -1.60E-07 -1.60E-08 2.71E-07 -9.51E-08 -4.45E-05

X24 1.28E-08 1.28E-09 -4.58E-07 -3.25E-07 -8.32E-06

X25 3.37E-08 3.37E-09 3.89E-07 -1.89E-08 5.01E-07

X26 1.67E-07 1.67E-08 1.06E-07 1.64E-07 1.17E-05

X27 2.26E-07 2.26E-08 -8.15E-07 -4.10E-08 5.12E-06

X28 -5.98E-09 -5.98E-10 -1.30E-07 -5.48E-08 6.01E-06

X29 -7.31E-08 -7.31E-09 6.04E-07 4.26E-07 -3.76E-06

X30 3.53E-08 3.53E-09 -2.31E-07 -1.03E-07 -1.84E-05

F(x) 7.22E-13 3.46E-07 1.96E-12 4.26E-07 2.45E-07
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  Figure 3: Convergence curves of algorithms on six of the test functions.
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  Figure 4: Behaviors of LEVO in small and large dimensions in unimodal test functions.
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 Table 6: Results of LEVO and other algorithms on unimodal test functions.

Function
LEVO EVO PSO BA

Ave std Ave std Ave Std Ave std
F1 1.56E-12 4.28E-13 2.59E-10 1.65E10 2.70E-09 1.00E-09 7.74E-01 5.28E-01
F2 4.67E-07 5.18E-08 1.84E-06 6.58E-07 7.15E-05 2.26E-05 3.35E-01 3.82E+00
F3 4.35E-12 1.61E-12 6.07E-10 6.34E-10 4.71E-06 1.49E-06 1.15E-01 7.66E-01
F4 5.79E-07 8.66E-08 1.36E-08 1.81E-09 3.25E-07 1.02E-08 1.92E-01 8.90E-01
F5 3.74E-05 3.67E-05 4.29E-03 5.09E-03 1.40E-03 1.27E-03 1.38E-01 1.13E-01

Function
SMS FPA CS GA

Ave std Ave Std Ave Std Ave std
F1 5.70E-02 1.47E-02 1.06E-07 1.27E-07 6.50E-03 2.05E-04 1.19E-01 1.26E-01
F2 6.85E-03 1.58E-03 6.24E-04 1.76E-04 2.12E-01 3.98E-02 1.45E-01 5.32E-02
F3 9.60E-01 8.24E-01 5.67E-08 3.90E-08 2.47E-01 2.14E-02 1.39E-01 1.21E-01
F4 2.77E-01 5.74E-03 3.84E-03 2.19E-03 1.12E-05 8.25E-06 1.58E-01 8.62E-01
F5 3.04E-04 2.58E-04 3.11E-03 1.37E-03 1.32E-03 7.28E-04 1.01E-02 3.26E-03

Table 7: Th e best values of objective functions of the LEVO algorithm on multimodal functions.
Values of the best variables

  F6 F7 F8 F9
X1 7.73E+01 -2.03E-09 4.08E-08 2.36E-08
X2 4.17E+02 -1.16E-08 -3.64E-08 7.42E-08
X3 5.00E+02 8.72E-10 -3.98E-08 3.81E-08
X4 1.99E+02 7.60E-09 -4.31E-08 -3.84E-07
X5 5.40E+01 5.06E-09 -1.70E-08 -4.86E-07
X6 -5.00E+02 -1.19E-09 2.90E-08 -1.00E-06
X7 -1.27E+02 -1.94E-10 2.84E-08 -4.42E-07
X8 -5.00E+02 -3.18E-09 2.09E-08 5.76E-07
X9 -2.38E+02 -3.66E-09 -7.83E-08 -2.52E-07

X10 1.26E+02 6.57E-09 -6.05E-08 7.32E-08
X11 2.12E+02 1.70E-08 -4.35E-08 3.38E-07
X12 2.03E+02 1.89E-09 -9.47E-08 1.15E-06
X13 4.15E+02 6.89E-09 1.37E-07 5.34E-07
X14 8.48E+01 1.94E-09 2.50E-10 -1.15E-06
X15 -2.67E+02 2.90E-09 -7.11E-08 2.11E-07
X16 -3.13E+02 1.58E-08 -4.69E-08 -5.43E-08
X17 1.86E+02 1.27E-08 1.74E-08 3.83E-07
X18 1.74E+02 -7.10E-09 -3.66E-08 3.00E-07
X19 4.56E+02 -1.61E-08 1.00E-08 3.29E-06
X20 3.61E+02 -7.21E-10 1.49E-08 9.21E-07
X21 -5.00E+02 -7.34E-09 1.25E-08 5.26E-07
X22 4.10E+02 1.32E-09 4.02E-08 1.29E-06
X23 -5.00E+02 -3.38E-09 3.22E-09 5.27E-06
X24 -3.10E+02 -4.41E-09 4.04E-08 7.72E-07
X25 3.95E+02 -4.21E-09 1.09E-08 -4.89E-08
X26 6.69E+01 1.28E-08 -5.98E-10 -1.03E-06
X27 -1.35E+01 -2.59E-09 1.21E-07 -1.46E-06
X28 -9.64E+01 1.30E-08 8.87E-09 -1.84E-07
X29 4.90E+02 1.45E-09 6.71E-09 1.11E-06
X30 1.90E+02 -1.91E-09 -1.09E-07 2.20E-07
F(x) -4.30E+03 3.98E-13 2.16E-07 1.36E-12

 Table 8: Results of LEVO and other algorithms on multimodal test functions.

Function
LEVO EVO PSO BA

ave std ave std ave std ave std
F6 -3.68E+03 2.48E+02 -1.61E+03 3.14E+02 -1.37E+03 1.46E+02 -1.07E+03 8.58E+02
F7 6.97E-13 1.88E-13 7.71E-06 8.45E-06 2.79E-01 2.19E-01 1.23E+00 6.86E-01
F8 2.81E-07 3.42E-08 3.73E-15 1.50E-15 1.11E-09 2.39E-11 1.29E-01 4.33E-02
F9 2.54E-12 6.31E-13 1.86E-02 9.55E-03 2.74E-01 2.04E-01 1.45E+00 5.70E-01

Function
SMS FPA CS GA

ave std ave std ave std ave std
F6 -4.21E+00 9.36E-16 -1.84E+03 5.04E+01 -2.09E+03 7.62E-03 -2.09E+03 2.47E+00
F7 1.33E+00 3.26E-01 2.73E-01 6.86E-02 1.27E-01 2.66E-03 6.59E-01 8.16E-01
F8 8.88E-06 8.56E-09 7.40E-03 7.10E-03 8.16E-09 1.63E-08 9.56E-01 8.08E-01
F9 7.06E-01 9.08E-01 8.50E-02 4.00E-02 1.23E-01 4.97E-02 4.88E-01 2.18E-01
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Table 9: Th e best values of objective functions of the LEVO algorithm on composite functions.

Values of the best variables
Function

F10 F11 F12 F13 F14 F15
X1 -1.37E-02 1.90E-01 8.82E-02 3.13E+00 1.16E-03 5.58E-01
X2 -8.06E-04 1.29E-02 -6.64E-01 2.25E+00 -1.00E+00 5.66E-01
X3 -5.17E-04 6.73E-03 7.23E-02 8.65E-01 -1.49E-01 8.11E-01
X4 -8.79E-03 6.46E-02 -4.14E-02 3.58E+00 -6.35E-01 -9.48E-03
X5 -1.26E-02 1.99E+00 -2.06E-02 3.23E-01 -8.13E-01 2.13E-01
X6 -4.88E-03 -6.98E-02 -7.23E-04 -2.71E+00 4.75E-02 9.50E-01
X7 -1.25E-02 -1.34E-02 -4.00E-03 1.15E+00 2.82E-02 1.31E-01
X8 -9.65E-03 7.93E-03 -4.23E-02 2.93E+00 5.03E-02 1.74E+00
X9 -5.98E-03 -4.03E-02 -2.50E-02 -3.31E+00 -1.22E-02 3.96E-01

X10 -4.78E-03 3.07E-03 4.97E-03 -2.44E+00 -2.07E-01 -1.96E-01
F(x) 1.27E+01 7.15E-04 -1.01E+00 4.00E-01 3.00E+00 -1.02E+00

Table 10: Results of LEVO and other algorithms on composite test functions.

Function
LEVO EVO PSO BA

Ave std ave std ave std Ave std
F10 1.27E+01 2.22E-012 1.51E-04 3.82E-04 1.20E+02 1.32E+02 1.83E+02 1.17E+02
F11 2.32E-03 1.38E-03 1.46E+01 3.22E+01 1.63E+02 1.19E+02 4.87E+02 1.61E+02
F12 -9.93E-01 2.35E-02 1.75E+02 4.65E+01 3.63E+02 1.51E+02 5.88E+02 1.38E+02
F13 4.20E-01 2.39E-02 3.16E+02 1.30E+01 4.50E+02 1.58E+02 7.57E+02 1.60E+02
F14 3.06E+00 6.51E-02 4.40E+00 1.66E+00 1.75E+02 1.76E+02 5.42E+02 2.20E+02
F15 -8.35E-02 1.93E-01 5.00E+02 2.07E-01 9.02E+02 8.39E-01 8.19E+02 1.53E+02

Function
SMS FPA CS GA

ave std ave std ave std ave std
F10 7.77E+02 5.21E-12 3.37E-01 2.36E-01 1.10E+02 1.10E+02 1.15E+02 2.70E+01
F11 8.74E+02 9.72E+00 1.82E+01 3.08E+00 1.41E+02 9.28E+01 9.55E+01 7.16E+00
F12 9.61E+02 6.72E+01 2.24E+02 5.03E+01 2.90E+02 8.61E+01 3.25E+02 5.17E+01
F13 9.00E+02 1.99E-05 3.62E+02 5.40E+01 4.02E+02 9.82E+01 4.66E+02 2.96E+01
F14 7.41E+02 7.86E-01 1.02E+01 1.39E+00 2.13E+02 2.06E+02 9.04E+01 1.37E+01
F15 9.01E+02 8.44E-01 5.04E+02 1.16E+00 8.12E+02 1.92E+02 5.21E+02 2.80E+01
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  Figure 5: Behaviors of LEVO in small and large dimensions in multimodal test functions.

Performance of LEVO in large-scale problems: 
To verify the performance of the proposed LEVO algorithm 
in large-scale optimization problems, this subsection 
solves the 200-dimensional versions of the unimodal and 
multimodal test functions. LEVO algorithm is tested with 
two cases of parameters, as illustrated in Table 11. Results of 
the proposed LEVO algorithm are compared with PSO, SMS, 
BA, FPA, CS, FA, GA, and classic EVO (search agent=100, 
5000 iteration). The results of unimodal test functions are 
reported in Table 12, and multimodal test functions are 
presented in Table 13.

According to the results in Tables 12,13, it is clear that 
LEVO (case1, 2) outperforms all the other algorithms in 
the majority of test cases. Also, LEVO (case 1) gives almost 
the same result as LEVO (case 2) although the search agent 
and iteration become lesser. These results show that LEVO 
avoids local optima, and resolves local optima stagnation in 
solving the challenging problem because of using levy fl ight.

Figures 4,5 illustrate the behavior of LEVO in solving 
small and large dimensions (Dim=30, Dim=200). It is 
obvious that the convergence behavior is almost the same in 
the case of increasing dimensions (convergence to optimal 
occurs in the same iteration, although the increase of 
dimensions).

 Table 11: Parameters of two cases of LEVO.

Case 1 Case 2

Search agent 30 100

Iteration 1000 5000
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Conclusion

This work improved the behavior of a nature-inspired 
algorithm called EVO. This paper improves EVO by hybrid 
levy fl ight with the original EVO. Using levy fl ight has a 
better eff ect on the performance of the EVO algorithm, and 
this is because the levy walk makes a large jump of particles; 
this allows particles to Visit new sites, leads to local optima 
avoidance, and high exploration in search space. The 
proposed LEVO was benchmarked on fi fteen test functions. 
These test functions are compared with algorithms 
described in the literature in terms of fi tness improvement 
of the population, exploration, exploitation, and local 
optima avoidance. From the results, we can conclude that 
the proposed LEVO outperforms other algorithms on the 
majority of test functions. In addition, the performance of 
LEVO is tested in unimodal and multimodal large-scale 
problems. Results of EVO, GA, PSO, FA, SMS, BA, FPA, 
and CS (at a hundred search agents over 5,000 iterations) 
are compared with LEVO (at 30 search agents and 1,000 
iterations). The results showed that LEVO outperforms 
all the other algorithms on the majority of test functions, 
although the search agent and iteration become less. Also, 
we can prove that the results of LEVO case 1 (30 search 
agents and 1000 iterations) give almost the same results 
as LEVO case 2 (at 100 search agents and 5000 iterations). 
Finally, we test the behavior of LEVO in small and large 
dimensions, and it turns out that the convergence behavior 

and convergence to optimal occur in the same iteration, 
although the dimensions increase. That makes us conclude 
that the proposed LEVO algorithm can be very eff ective for 
solving large-scale problems as well. 
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