apc-adv.jpg
Help ?

IGMIN: We're glad you're here. Please click "create a new query" if you are a new visitor to our website and need further information from us.

If you are already a member of our network and need to keep track of any developments regarding a question you have already submitted, click "take me to my Query."

Discover the nexus of Science, Technology, Engineering, and Medicine in our Multidisciplinary Open Access Journal – a platform for breakthroughs and collaborative expertise, driving knowledge and innovation. | Important Update! Building on our inaugural year's success, adjustments to article processing charges will take effect in October. More details coming soon! | Discover the nexus of Science, Technology, Engineering, and Medicine in our Multidisciplinary Open Access Journal – a platform for breakthroughs and collaborative expertise, driving knowledge and innovation. | Important Update! Building on our inaugural year's success, adjustments to article processing charges will take effect in October. More details coming soon!
Abstract

Abstract at IgMin Research

Our mission is to foster interdisciplinary dialogue and accelerate the advancement of knowledge across a wide spectrum of scientific domains.

Engineering Group Research Article Article ID: igmin157

Modeling of an Electric-fired Brick Oven, Directly Heated

Energy Engineering Mechanical EngineeringApplied Engineering Affiliation

Affiliation

    Department of Electromechanics, Polytechnic Faculty, President Joseph, Kasa-Vubu University, B.P. 314, Boma, Kongo Central, DR Congo

Abstract

The purpose of this article is to propose a model of an electric-fired brick oven, with the aim of eliminating the imperfections presented by traditional brick ovens. To complete this study, we used the concepts of heat transfer, and material resistance, as well as those of computer-aided mechanical design.
Deemed satisfactory, the results found give a yield of 94.5% and a cooking time of 7.29 hours based on 2000 bricks cooked.

Figures

References

    1. Kobor JD, Ndiaye LG, Touré M, Ndioukane R, Diédhiou A, Bayo A. Study of some physical and thermo-physical parameters of terracotta bricks at different temperatures. Conference Paper, May 2014.
    2. Ncube A, Matsika R, Mangori L, Ulgiati S. Moving towards resource efficiency and circular economy in the brick manufacturing sector in Zimbabwe. International Journal of Cleaner Production. 2021; 281: 125238.
    3. Benthani S. Numerical modeling of a forced convection electric oven. Memory. Trois-Rivières University of Quebec at Trois-Rivières. 2004; 116.
    4. Jannot Y, Moyne C. 2nd year course: Thermal transfers. Ecole des MinesMines Nancy, 2012.
    5. Kurmus H, Mohajerani A. Energy savings, thermal conductivity, micro and macro structural analysis of fired clay bricks incorporating cigarette butts. International Journal of Construction and Building. VIC. 3001; 2021; 376-392.
    6. Ettoumi M, Jouini M, Neculita CM, Bouhlel S, Coudert L, Taha Y. Benzazoua M. Characterization of phosphate processing sludge from Tunisian mining basin and its potential valorization in fired bricks making. International journal of Journal of Cleaner Production. 2021; 284: 124750.

Similar Articles

Efficacy of Different Concentrations of Insect Growth Regulators (IGRs) on Maize Stem Borer Infestation
Muhammad Salman Hameed, Khurshied Ahmed Khan, Nida Urooj and Ijaz Rasool Noorka
DOI10.61927/igmin147
Peritoneal Carcinomatosis from Ovarian Cancer: A Case Report
Andrea González De Godos, Enrique Asensio Diaz, Pilar Pinto Fuentes, Baltasar Pérez Saborido and David Pacheco Sánchez
DOI10.61927/igmin181