173-topics.jpg
Help ?

IGMIN: We're glad you're here. Please click "create a new query" if you are a new visitor to our website and need further information from us.

If you are already a member of our network and need to keep track of any developments regarding a question you have already submitted, click "take me to my Query."

Discover the nexus of Science, Technology, Engineering, and Medicine in our Multidisciplinary Open Access Journal – a platform for breakthroughs and collaborative expertise, driving knowledge and innovation. | Important Update! Building on our inaugural year's success, adjustments to article processing charges will take effect in October. More details coming soon! | Discover the nexus of Science, Technology, Engineering, and Medicine in our Multidisciplinary Open Access Journal – a platform for breakthroughs and collaborative expertise, driving knowledge and innovation. | Important Update! Building on our inaugural year's success, adjustments to article processing charges will take effect in October. More details coming soon!
Abstract

Abstract at IgMin Research

Our mission is to foster interdisciplinary dialogue and accelerate the advancement of knowledge across a wide spectrum of scientific domains.

Medicine Group Review Article Article ID: igmin161

Preventing Rectal Toxicity in Prostate Cancer: Diet and Supplement Alternative to Enemas or Rectal Spacer

Radiology Affiliation

Affiliation

    Complex Operational Unit of Oncological Radiotherapy, Oncohaematological Department, Cosenza Hospital, Via San Martino snc, 87100, Cosenza, Italy

Abstract

Background: Rectal toxicity is an important side effect of prostate cancer irradiation affecting 25% of patients. The role of dosimetric variables has a set of dose-volume constraints and curves to estimate the risk of rectal damage. The rectum position at the time of CT planning is different from the position during radiotherapy. Three methods are available to achieve optimal rectum position: enema; prostate cancer spacer; fiber-/fat-free diet. 
Methods: A 70.2 Gray radiation divided into 26 hypo-fractions was administered to 115 patients with prostate cancer by VMAT referred to a single center in Italy. To empty the rectum, all patients were administered a fiber-/fat-free diet and those with Eating Disorders (ED) were also added with activated charcoal (2 tablets/day) and a macrogol-based medical device (2 sachets/day). During treatment, the volumetric amount of rectum in the target was measured by comparing control-CT with simulation-CT, and acute toxicity was also checked. 
Results: The rectum position during control-CT in diet-only patients (29) predicted toxicity recorded during treatment, while in the ED group rectum position was adherent to position during simulations. Rectal volume target > 0.25 cc receiving a dose > V70 caused acute G3 toxicity that attenuated or worsened with rectal displacement. Acute rectal toxicity occurred in 6/29 (20.68%) patients (1 G3, 5 G1) in the diet-only group, while only in 1/86 (1.16%) patients (G1) in the ED group. No chronic toxicity was recorded in either group. 
Conclusion: Prostate cancer patients treated with VMAT, diet, charcoal, and macrogol emptied the rectum optimally and reduced incidence and severity of acute rectal toxicity, also with benefit on late toxicity.

Figures

References

    1. Dörr W, Hendry JH. Consequential late effects in normal tissues. Radiother Oncol. 2001 Dec;61(3):223-31. doi: 10.1016/s0167-8140(01)00429-7. PMID: 11730991.
    2. Jereczek-Fossa BA, Zerini D, Fodor C, Santoro L, Serafini F, Cambria R, Vavassori A, Cattani F, Garibaldi C, Gherardi F, Ferrari A, Rocco B, Scardino E, de Cobelli O, Orecchia R. Correlation between acute and late toxicity in 973 prostate cancer patients treated with three-dimensional conformal external beam radiotherapy. Int J Radiat Oncol Biol Phys. 2010 Sep 1;78(1):26-34. doi: 10.1016/j.ijrobp.2009.07.1742. Epub 2010 Feb 3. PMID: 20133085.
    3. Lock M, Best L, Wong E, Bauman G, D'Souza D, Venkatesan V, Sexton T, Ahmad B, Izawa J, Rodrigues G. A Phase II trial of arc-based hypofractionated intensity-modulated radiotherapy in localized prostate cancer. Int J Radiat Oncol Biol Phys. 2011 Aug 1;80(5):1306-15. doi: 10.1016/j.ijrobp.2010.04.054. Epub 2010 Aug 12. PMID: 20708855.
    4. Cella L, D'Avino V, Liuzzi R, Conson M, Doria F, Faiella A, Loffredo F, Salvatore M, Pacelli R. Multivariate normal tissue complication probability modeling of gastrointestinal toxicity after external beam radiotherapy for localized prostate cancer. Radiat Oncol. 2013 Sep 23;8:221. doi: 10.1186/1748-717X-8-221. PMID: 24053357; PMCID: PMC3852304.
    5. Fiorino C, Valdagni R, Rancati T, Sanguineti G. Dose-volume effects for normal tissues in external radiotherapy: pelvis. Radiother Oncol. 2009 Nov;93(2):153-67. doi: 10.1016/j.radonc.2009.08.004. Epub 2009 Sep 16. PMID: 19765845.
    6. Michalski JM, Gay H, Jackson A, Tucker SL, Deasy JO. Radiation dose-volume effects in radiation-induced rectal injury. Int J Radiat Oncol Biol Phys. 2010 Mar 1;76(3 Suppl):S123-9. doi: 10.1016/j.ijrobp.2009.03.078. Erratum in: Int J Radiat Oncol Biol Phys. 2019 Aug 1;104(5):1185. PMID: 20171506; PMCID: PMC3319467.
    7. Mostafaei S, Abdollahi H, Kazempour Dehkordi S, Shiri I, Razzaghdoust A, Zoljalali Moghaddam SH, Saadipoor A, Koosha F, Cheraghi S, Mahdavi SR. CT imaging markers to improve radiation toxicity prediction in prostate cancer radiotherapy by stacking regression algorithm. Radiol Med. 2020 Jan;125(1):87-97. doi: 10.1007/s11547-019-01082-0. Epub 2019 Sep 24. PMID: 31552555.
    8. Denham JW, O'Brien PC, Dunstan RH, Johansen J, See A, Hamilton CS, Bydder S, Wright S. Is there more than one late radiation proctitis syndrome? Radiother Oncol. 1999 Apr;51(1):43-53. doi: 10.1016/s0167-8140(99)00027-4. PMID: 10386716.
    9. Heemsbergen WD, Peeters ST, Koper PC, Hoogeman MS, Lebesque JV. Acute and late gastrointestinal toxicity after radiotherapy in prostate cancer patients: consequential late damage. Int J Radiat Oncol Biol Phys. 2006 Sep 1;66(1):3-10. doi: 10.1016/j.ijrobp.2006.03.055. Epub 2006 Jul 11. PMID: 16814954.
    10. Common Terminology Criteria for Adverse Events (CTCAE) version 3.0 Web site [cited 2016 Dec 4]. https://ctep.cancer.gov/protocol development/electronic_applications/docs/ctcaev3.pdf.
    11. Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, Bentzen SM, Nam J, Deasy JO. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys. 2010 Mar 1;76(3 Suppl):S10-9. doi: 10.1016/j.ijrobp.2009.07.1754. PMID: 20171502; PMCID: PMC4041542.
    12. Ozkan EE, Ozseven A, Cerkesli ZAK. Evaluating the predictive value of quantec rectum tolerance dose suggestions on acute rectal toxicity in prostate carcinoma patients treated with IMRT. Rep Pract Oncol Radiother. 2020 Jan-Feb;25(1):50-54. doi: 10.1016/j.rpor.2019.12.002. Epub 2019 Dec 9. PMID: 31889921; PMCID: PMC6931199.
    13. Arcangeli S, Greco C. Hypofractionated radiotherapy for organ-confined prostate cancer: is less more? Nat Rev Urol. 2016 Jul;13(7):400-8. doi: 10.1038/nrurol.2016.106. Epub 2016 Jun 14. PMID: 27296648.
    14. Storey MR, Pollack A, Zagars G, Smith L, Antolak J, Rosen I. Complications from radiotherapy dose escalation in prostate cancer: preliminary results of a randomized trial. Int J Radiat Oncol Biol Phys. 2000 Oct 1;48(3):635-42. doi: 10.1016/s0360-3016(00)00700-8. PMID: 11020558.
    15. Huang EH, Pollack A, Levy L, Starkschall G, Dong L, Rosen I, Kuban DA. Late rectal toxicity: dose-volume effects of conformal radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2002 Dec 1;54(5):1314-21. doi: 10.1016/s0360-3016(02)03742-2. PMID: 12459352.
    16. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Prostate Cancer Version 1. 2024.
    17. Kuban DA, Nogueras-Gonzalez GM, Hamblin L, Lee AK, Choi S. Preliminary Report of a Randomized Dose Escalation Trial for Prostate Cancer using Hypofractionation. Int J Radiat Oncol Biol Phys2010; 78:S58–S59.
    18. Pollack A, Walker G, Horwitz EM, Price R, Feigenberg S, Konski AA, Stoyanova R, Movsas B, Greenberg RE, Uzzo RG, Ma C, Buyyounouski MK. Randomized trial of hypofractionated external-beam radiotherapy for prostate cancer. J Clin Oncol. 2013 Nov 1;31(31):3860-8. doi: 10.1200/JCO.2013.51.1972. Epub 2013 Oct 7. PMID: 24101042; PMCID: PMC3805927.
    19. Porreca A, Noale M, Artibani W, Bassi PF, Bertoni F, Bracarda S, Conti GN, Corvò R, Gacci M, Graziotti P, Magrini SM, Mirone V, Montironi R, Muto G, Pecoraro S, Ricardi U, Russi E, Tubaro A, Zagonel V, Crepaldi G, Maggi S; Pros-IT CNR study group. Disease-specific and general health-related quality of life in newly diagnosed prostate cancer patients: the Pros-IT CNR study. Health Qual Life Outcomes. 2018 Jun 13;16(1):122. doi: 10.1186/s12955-018-0952-5. PMID: 29898750; PMCID: PMC6001046.

Similar Articles

Analysis of Reliable Transmission Performance Optimization Methods for Satellite-to-Ground Laser Communication Links
Zhi Liu, Qingfang Jiang, Kanglian Zhao, Xianzhu Liu, Wanzhuo Ma and Xiaolong Ni
DOI
Investigation of Lateral Vibrations in Turbine-generator Unit 5 of the Inga 2 Hydroelectric Power Plant
André Mampuya Nzita, Edmond Phuku Phuati, Robert Muanda Ngimbi, Guyh Dituba Ngoma and Nathanaël Masiala Mavungu
DOI10.61927/igmin173
Efficacy of Different Concentrations of Insect Growth Regulators (IGRs) on Maize Stem Borer Infestation
Muhammad Salman Hameed, Khurshied Ahmed Khan, Nida Urooj and Ijaz Rasool Noorka
DOI10.61927/igmin147