Abstract at IgMin Research

Our mission is to foster interdisciplinary dialogue and accelerate the advancement of knowledge across a wide spectrum of scientific domains.

The Antioxidant and Antidepressant Properties of Dietary Proteins Derived from Egg and Bean Extracts and Their Acute Toxicity: A Journey from Nutrition to Pharmacognosy



    Laboratory of Biology and Health, Department of Biology, Faculty of Sciences Ben M’Sik, University Hassan II, Casablanca, Morocco


This research reveals the previously unexplored pharmacognostic potential of antidepressants found in nutrients derived from both legume and animal sources. Through preclinical investigations involving mouse models, the study focused into antidepressant and antioxidant activities of non-denatured and denatured protein extracts from beans and eggs. Non-denatured protein extracts from beans and eggs, at saturation levels of 40% and 80%, were examined as macronutrients, while denatured protein extracts at equivalent saturation levels were considered micronutrients. The study employed the DPPH and hydrogen peroxide tests to assess antioxidant activity, and the forced swimming test and sucrose preference test to evaluate acute and chronic mild antidepressant effects, respectively. The acute toxicity study revealed that macronutrients from eggs at 40% and 80% saturation displayed non-toxic effects (LD50 >5 g/kg), while those from beans, specifically at saturation of 80%, exhibited a relatively low level of toxicity (LD50 = 2.5 g/kg). Evaluation of antioxidant activity using the DPPH test yielded inconclusive results due to the influence of ethanol precipitation. In contrast, the H2O2 test demonstrated significant antioxidant potential in both macronutrients and micronutrients extracted from beans and eggs at all saturation levels. In investigating antidepressant properties, both macronutrients and micronutrients of bean and egg protein extracts at 40% and 80% saturation exhibited notable antidepressant effects, particularly the micronutrients at saturation of 80%. This antidepressant effect was characterized by a reduction in immobility time and an increase in sucrose preference.
In conclusion, this study uncovers the multifaceted potential of protein extracts sourced from natural products, plant and animal origins, as agents for treating depression. It opens up new avenues for research, with implications ranging from neuroprotection to the management of depression, inspiring optimism for innovative approaches to mental health treatment.



    1. Smith K. The intricate relationship between diet, mental health, and well-being. Frontiers in Human Neuroscience. 2019; 13(33).
    2. Sarris J, Logan AC, Akbaraly TN, Amminger GP, Balanzá-Martínez V, Freeman MP, Hibbeln J, Matsuoka Y, Mischoulon D, Mizoue T, Nanri A, Nishi D, Ramsey D, Rucklidge JJ, Sanchez-Villegas A, Scholey A, Su KP, Jacka FN; International Society for Nutritional Psychiatry Research. Nutritional medicine as mainstream in psychiatry. Lancet Psychiatry. 2015 Mar;2(3):271-4. doi: 10.1016/S2215-0366(14)00051-0. Epub 2015 Feb 25. PMID: 26359904.
    3. Gómez-Pinilla F. Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci. 2008 Jul;9(7):568-78. doi: 10.1038/nrn2421. PMID: 18568016; PMCID: PMC2805706.
    4. Belmaker RH, Agam G. Major depressive disorder. N Engl J Med. 2008 Jan 3;358(1):55-68. doi: 10.1056/NEJMra073096. PMID: 18172175.
    5. Jacka FN. Nutritional Psychiatry: Where to Next? EBioMedicine. 2017 Mar;17:24-29. doi: 10.1016/j.ebiom.2017.02.020. Epub 2017 Feb 21. PMID: 28242200; PMCID: PMC5360575.
    6. Lieberman MD, Gaunt R, Gilbert DT, Trope Y. Reflexion and reflection: A social cognitive neuroscience approach to attributional inference. Advances in experimental social psychology. 2002; 34:199‑
    7. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of the Cell. 4th Garland Science; 2002.
    8. Fernstrom JD. Large neutral amino acids: dietary effects on brain neurochemistry and function. Amino Acids. 2013 Sep;45(3):419-30. doi: 10.1007/s00726-012-1330-y. Epub 2012 Jun 8. PMID: 22677921.
    9. Fernstrom JD, Fernstrom MH. Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J Nutr. 2007 Jun;137(6 Suppl 1):1539S-1547S; discussion 1548S. doi: 10.1093/jn/137.6.1539S. PMID: 17513421.
    10. Englard S, Seifter S. Precipitation techniques. Methods Enzymol. 1990;182:285-300. doi: 10.1016/0076-6879(90)82024-v. PMID: 2314242.
    11. Boye JI, Aksay S, Roufik S, Ribereau S, Mondor M, Farnworth E, Rajamohamed SH. Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Research International. 2010; 43:537‑
    12. Reduan FH, Shaari RM, Sayuti NSA, Mustapha NM, Abu Bakar MZ, Sithambaram S, Hamzah H. Acute and subacute dermal toxicity of ethanolic extract of Melastoma malabathricumleaves in Sprague-Dawley rats. Toxicol Res. 2020 Mar 26;36(3):203-210. doi: 10.1007/s43188-019-00013-5. PMID: 32685424; PMCID: PMC7352010.
    13. Qamar F,Naveed S, Faizi S, Sana A. Formulation and Evaluation of Natural Antioxidant Cream of Ocimum basilicum. Latin American Journal of Pharmacy. 2021; 40:2293‑
    14. Krishnan V, Nestler EJ. Animal models of depression: molecular perspectives. Curr Top Behav Neurosci. 2011;7:121-47. doi: 10.1007/7854_2010_108. PMID: 21225412; PMCID: PMC3270071.
    15. Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature. 1977 Apr 21;266(5604):730-2. doi: 10.1038/266730a0. PMID: 559941.
    16. Willner P. Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology. 2005;52(2):90-110. doi: 10.1159/000087097. Epub 2005 Jul 19. PMID: 16037678.
    17. Wessel D, Flügge UI. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem. 1984 Apr;138(1):141-3. doi: 10.1016/0003-2697(84)90782-6. PMID: 6731838.
    18. Fic E, Kedracka-Krok S, Jankowska U, Pirog A, Dziedzicka-Wasylewska M. Comparison of protein precipitation methods for various rat brain structures prior to proteomic analysis. Electrophoresis. 2010 Oct;31(21):3573-9. doi: 10.1002/elps.201000197. PMID: 20967768.
    19. Kita Y, Arakawa T, Lin TY, Timasheff SN. Contribution of the surface free energy perturbation to protein-solvent interactions. Biochemistry. 1994 Dec 20;33(50):15178-89. doi: 10.1021/bi00254a029. PMID: 7999778.
    20. Torkova A, Koroleva O, Khrameeva E, Fedorova T, Tsentalovich M. Structure-Functional Study of Tyrosine and Methionine Dipeptides: An Approach to Antioxidant Activity Prediction. Int J Mol Sci. 2015 Oct 23;16(10):25353-76. doi: 10.3390/ijms161025353. PMID: 26512651; PMCID: PMC4632805.
    21. Hernández-Ledesma B, Dávalos A, Bartolomé B, Amigo L. Preparation of antioxidant enzymatic hydrolysates from alpha-lactalbumin and beta-lactoglobulin. Identification of active peptides by HPLC-MS/MS. J Agric Food Chem. 2005 Feb 9;53(3):588-93. doi: 10.1021/jf048626m. PMID: 15686406.
    22. Zheng L, Zhao Y, Dong H, Su G, Zhao M. Structure–activity relationship of antioxidant dipeptides: Dominant role of Tyr, Trp, Cys and Met residues. Journal of Functional Foods. 2016; 21:485‑
    23. Güngör N, Ozyürek M, Güçlü K, Cekiç SD, Apak R. Comparative evaluation of antioxidant capacities of thiol-based antioxidants measured by different in vitro methods. Talanta. 2011 Feb 15;83(5):1650-8. doi: 10.1016/j.talanta.2010.11.048. Epub 2010 Nov 30. PMID: 21238764.
    24. van Overveld FW, Haenen GR, Rhemrev J, Vermeiden JP, Bast A. Tyrosine as important contributor to the antioxidant capacity of seminal plasma. Chem Biol Interact. 2000 Jul 3;127(2):151-61. doi: 10.1016/s0009-2797(00)00179-4. PMID: 10936230.
    25. Cano A, Alcaraz O, Arnao MB. Free radical-scavenging activity of indolic compounds in aqueous and ethanolic media. Anal Bioanal Chem. 2003 May;376(1):33-7. doi: 10.1007/s00216-003-1848-7. Epub 2003 Mar 29. PMID: 12734615.
    26. Lennicke C, Rahn J, Lichtenfels R, Wessjohann LA, Seliger B. Hydrogen peroxide - production, fate and role in redox signaling of tumor cells. Cell Commun Signal. 2015 Sep 14;13:39. doi: 10.1186/s12964-015-0118-6. PMID: 26369938; PMCID: PMC4570748.
    27. Pouokam E, Rehn M, Diener M. Effects of H2O2 at rat myenteric neurones in culture. Eur J Pharmacol. 2009 Aug 1;615(1-3):40-9. doi: 10.1016/j.ejphar.2009.04.066. Epub 2009 May 14. PMID: 19446543.
    28. Dantzler HA, Matott MP, Martinez D, Kline DD. Hydrogen peroxide inhibits neurons in the paraventricular nucleus of the hypothalamus via potassium channel activation. Am J Physiol Regul Integr Comp Physiol. 2019 Jul 1;317(1):R121-R133. doi: 10.1152/ajpregu.00054.2019. Epub 2019 May 1. PMID: 31042419; PMCID: PMC6692749.
    29. Yankelevitch-Yahav R, Franko M, Huly A, Doron R. The forced swim test as a model of depressive-like behavior. J Vis Exp. 2015 Mar 2;(97):52587. doi: 10.3791/52587. PMID: 25867960; PMCID: PMC4401172.
    30. van Praag HM. In search of the mode of action of antidepressants. 5-HTP/tyrosine mixtures in depressions. Neuropharmacology. 1983 Mar;22(3 Spec No):433-40. doi: 10.1016/0028-3908(83)90193-4. PMID: 6304561.
    31. Sandyk R. L-tryptophan in neuropsychiatric disorders: a review. Int J Neurosci. 1992 Nov-Dec;67(1-4):127-44. doi: 10.3109/00207459208994781. PMID: 1305630.
    32. Young SN. Behavioral effects of dietary neurotransmitter precursors: basic and clinical aspects. Neurosci Biobehav Rev. 1996 Summer;20(2):313-23. doi: 10.1016/0149-7634(95)00022-4. PMID: 8811719.
    33. Meyers S. Use of neurotransmitter precursors for treatment of depression. Altern Med Rev. 2000 Feb;5(1):64-71. PMID: 10696120.
    34. Treadway MT, Zald DH. Reconsidering anhedonia in depression: lessons from translational neuroscience. Neurosci Biobehav Rev. 2011 Jan;35(3):537-55. doi: 10.1016/j.neubiorev.2010.06.006. Epub 2010 Jul 11. PMID: 20603146; PMCID: PMC3005986.
    35. Schalla MA, Kühne SG, Friedrich T, Hanel V, Kobelt P, Goebel-Stengel M, Rose M, Stengel A. Sucrose Preference and Novelty-Induced Hypophagia Tests in Rats using an Automated Food Intake Monitoring System. J Vis Exp. 2020 May 8;(159). doi: 10.3791/60953. PMID: 32449711.
    36. Liu Y, Zhao J, Guo W. Emotional Roles of Mono-Aminergic Neurotransmitters in Major Depressive Disorder and Anxiety Disorders. Front Psychol. 2018 Nov 21;9:2201. doi: 10.3389/fpsyg.2018.02201. PMID: 30524332; PMCID: PMC6262356.

Similar Articles

Qualitative Model of Electrical Conductivity of Irradiated Semiconductor
Temur Pagava, Levan Chkhartishvili, Manana Beridze, Darejan Khocholava, Marina Shogiradze and Ramaz Esiava
Lifestyle and Well-being among Portuguese Firefighters
Laura CarmonaRaquel Pinheiro, Joana Faria-Anjos, Sónia Namorado and Maria José Chambel
Challenge and Readiness to Implemented Geothermal Energy in Indonesia
Endah Murtiana Sari, Kalyca Najla Manggala, Marvian Farabi Arief and Panduaji Suswanto Umar Said