Help ?

IGMIN: We're glad you're here. Please click 'create a new query' if you are a new visitor to our website and need further information from us.

If you are already a member of our network and need to keep track of any developments regarding a question you have already submitted, click 'take me to my Query.'

Browse by Subjects

Welcome to IgMin Research – an Open Access journal uniting Biology, Medicine, and Engineering. We’re dedicated to advancing global knowledge and fostering collaboration across scientific fields.

Members

Our aim is to facilitate conversations that unify multiple scientific perspectives for accelerated progress.

Articles

Our aim is to facilitate conversations that unify multiple scientific perspectives for accelerated progress.

Explore Content

Our aim is to facilitate conversations that unify multiple scientific perspectives for accelerated progress.

Identify Us

Our aim is to facilitate conversations that unify multiple scientific perspectives for accelerated progress.

IgMin Corporation

Welcome to IgMin, a leading platform dedicated to enhancing knowledge dissemination and professional growth across multiple fields of science, technology, and the humanities. We believe in the power of open access, collaboration, and innovation. Our goal is to provide individuals and organizations with the tools they need to succeed in the global knowledge economy.

Publications Support
[email protected]
E-Books Support
[email protected]
Webinars & Conferences Support
[email protected]
Content Writing Support
[email protected]
IT Support
[email protected]

Search

Explore Section

Content for the explore section slider goes here.

Abstract

Abstract at IgMin Research

Our aim is to facilitate conversations that unify multiple scientific perspectives for accelerated progress.

General-science Group Research Article Article ID: igmin270

Knowledge Discovery on Artificial Intelligence and Physical Therapy: Document Mining Analysis

Physical Therapy DOI10.61927/igmin270 Affiliation

Affiliation

    1Department of Physical Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand

    2Department of Data Science and Digital Innovation, Faculty of Innovation Technology and Creativity, The Far Eastern University, Chiang Mai, 50100 Thailand

724
VIEWS
179
DOWNLOADS
Connect with Us

Abstract

Artificial intelligence (AI) is the simulation of human intelligence and benchmarks in Physical Therapy (PT). Therefore, the updated knowledge derived from large databases is highly engaging. Data Mining (DM) analysis from a big database related to “AI” and “PT” was the aim for the co-occurrence of words, network clusters, and trends under the Knowledge Discovery in Databases (KDD). The terms “AI” and “PT” were cited from a big database in the SCOPUS. The co-occurrence, network clustering, and trend were computer-analyzed with a Bibliometric tool. Between 1993 and 2024, 174 documents were published, revealing the most frequently used terms related to AI, human, PT, physical modalities, machine learning, physical treatment, deep learning, patient rehabilitation, robotics, virtual reality, algorithms, telerehabilitation, ergonomics, exercise, quality of life, and other related topics. Five network clusters were discovered as; (1) AI, decision support systems, health care, human-computer interaction, intelligent robots, learning algorithms, neuromuscular, stroke, and patient rehabilitation, PT, robotics, etc., respectively, (2) aged, algorithms, biomechanics, exercise, exercise therapy, female, humans, machine learning, middle-aged, PT modalities, rehabilitation, treatment outcome, deep learning, etc., (3) deep learning, diagnosis, and quality of life, (4) review and systematic review, and (5) clinical practice. From 2008 to 2024, a trend emerged in the fields of algorithms, computer-assisted diagnosis, treatment planning, classification, equipment design, signal processing, AI, exercise, physical and patient rehabilitation, robotics, virtual reality, machine learning, deep learning, clinical practice, etc. Discovered knowledge of AI with PT related to different machine learning for use in clinical practice.

Figures

References

    1. van der Aalst W. Process mining-Data science in action. 2nd ed. Springer; 2016.
    2. American Physical Therapy Association (APTA). The digital enabled physical therapist: an APTA foundational paper. November 2022. https://www.apta.org/contentassets/e37aa1765cab4b1791d22717d3ac20af/apta-digital-health-foundational-paper-2022.pdf
    3. Kahie M, Deshmukh N, Makhija LH, Chaudhary S, Ambad R, Bankar N. Artificial intelligence (AI) and machine learning (ML) in clinical practice and physiotherapy. Ann Med Health Sci Res. 2021;11(S3):158-159.
    4. Sheikh H, Prins C, Schrijvers E. Chapter 2 - Artificial Intelligence: definition and background. In: Mission AI. 2023. p. 15-41. doi: 10.1007/978-3-031-21448-6_2.
    5. Soori M, Arezoo B, Dastres R. Artificial intelligence, machine learning and deep learning in advanced robotics: a review. Cogn Robot. 2023;3:54-70.
    6. Harwich E, Laycock K. Thinking on its own: AI in the NHS. London Reform; 2018. http://www.reform.uk/wp-content/uploads/2018/01/AI-in-Healthcare-report.pdf
    7. Alsobhi M, Khan F, Chevidikunnan MF, Basuodan R, Shawli L, Neamatallah Z. Physical Therapists' Knowledge and Attitudes Regarding Artificial Intelligence Applications in Health Care and Rehabilitation: Cross-sectional Study. J Med Internet Res. 2022 Oct 20;24(10):e39565. doi: 10.2196/39565. PMID: 36264614; PMCID: PMC9634519.
    8. Kudande D, Shah BN. A review paper on formation of data science and fundamentals. Inter J Engin App Sci Technol 2020:4(2):150-152.
    9. Kaul V, Enslin S, Gross SA. History of artificial intelligence in medicine. Gastrointest Endosc. 2020 Oct;92(4):807-812. doi: 10.1016/j.gie.2020.06.040. Epub 2020 Jun 18. PMID: 32565184.
    10. Sumner J, Lim HW, Chong LS, Bundele A, Mukhopadhyay A, Kayambu G. Artificial intelligence in physical rehabilitation: A systematic review. Artif Intell Med. 2023 Dec;146:102693. doi: 10.1016/j.artmed.2023.102693. Epub 2023 Nov 2. PMID: 38042593.
    11. Mahto RK, Kumari A, Humari S. The use of AI in physical therapy. Educ Adm Theory Pract. 2024;30(4):5694-5696.
    12. Upadhyay A. A Review on Bibliometric Analysis of Data Mining. Int J Eng Res Comp Sci Eng. 2018;5(4):621-615.
    13. Fayyad U, Piatetsky-Shapiro G, Smyth P. From Data Minning to Knowledge Discovery in Databases. Am Assoc Artif Intell. 1996;17(3): 37-53.
    14. Choudhri AF, Siddiqui A, Khan NR, Cohen HL. Understanding bibliometric parameters and analysis. Radiographics. 2015 May-Jun;35(3):736-46. doi: 10.1148/rg.2015140036. PMID: 25969932.
    15. Dissanayake K, Johar MGM, Ubeysekara NH. Data mining techniques in disease classification: descriptive bibliometric analysis and visualization of global publications. Int J Comp Digital Sys. 2023;13(1):289-301.
    16. Leelarungrayub J, Chantaraj P, Thipcharoen S, Jintana J. Updated research trend and clustering algorithm on virtual reality and pulmonary rehabilitation: Scopus-based bibliometric and visual analysis. J Assoc Med Sci. 2024;57(2):173-182.
    17. Cobo MJ, Lopez-Herrera AG, Herrera-Viedma E, Herrera F. Science mapping software tools: review, analysis, and cooperative study among tools. J Am Soc Inform Sci Technol. 2021;62(7):1382-1402.
    18. Leydesdorff L. On the normalization and visualization of author co-citation data: Salton’s Cosine versus the Jaccard Index. J Am Soc Inform Sci Technol. 2008;59(1):77-85.
    19. Pons P, Latapy M. Computing communities in large networks using random walks. In: Yolum P, Güngör T, Gürgen F, Özturan C, editors. Computer and Information Sciences - ISCIS 2005. Berlin, Heidelberg: Springer; 2005. p. 284-293.
    20. Kamada T, Kawai S. An algorithm for drawing general undirected graphs. Inf Proc Lett. 1989;49(11-12):7-15.
    21. Heradio R, Perez-Morago H, Fernandez-Amoros D, Cabrerizo FJ, Herrera-Viedma E. A bibliometric analysis of 20 years of research on software product lines. Inf Softw Technol. 2016;72:1-15.
    22. Kang GJ, Ewing-Nelson SR, Mackey L, Schlitt JT, Marathe A, Abbas KM, Swarup S. Semantic network analysis of vaccine sentiment in online social media. Vaccine. 2017 Jun 22;35(29):3621-3638. doi: 10.1016/j.vaccine.2017.05.052. Epub 2017 May 27. PMID: 28554500; PMCID: PMC5548132.
    23. Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM. How to conduct a bibliometric analysis: an overview and guidelines. J Bus Res. 2021;133:285-296.
    24. Joshi S, Nair MK. Prediction of heart disease using classification-based data mining technique. In: Computational Intelligence in Data Mining-Volume 2. Springer; 2015;503-511.
    25. Brachman RJ, Anand T. The process of knowledge discovery in databases: a human-centered approach. In: Advances in Knowledge Discovery and Data Mining. Menlo Park: AAAI Press/The MIT Press; 1996;37-58.
    26. Kokol P, Blažun Vošner H, Završnik J. Application of bibliometrics in medicine: a historical bibliometrics analysis. Health Info Libr J. 2021 Jun;38(2):125-138. doi: 10.1111/hir.12295. Epub 2020 Jan 29. PMID: 31995273.
    27. Garrido-Cardenas JA, de Lamo-Sevilla C, Cabezas-Fernández MT, Manzano-Agugliaro F, Martínez-Lirola M. Global tuberculosis research and its future prospects. Tuberculosis (Edinb). 2020 Mar;121:101917. doi: 10.1016/j.tube.2020.101917. Epub 2020 Feb 23. PMID: 32279873.
    28. Dinic B, Jevremov T. Trends in research related to the dark triad: a bibliometric analysis. Curr Psychol. 2021;40(7):3206-3215.
    29. Mongeon P, Paul-Hus A. The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics. 2016;106(1):213-228.
    30. Chunjie L, Jianfeng Z, Lei W, Qiang Y. Cosine normalization: using cosine similarity instead of dot product in neural networks. arXiv. 2017. https://doi.org/10.48550/arXiv.1702.05870.
    31. Zhou X, Zhou M, Huang D, Cui L. A probabilistic model for co-occurrence analysis in bibliometrics. J Biomed Inform. 2022 Apr;128:104047. doi: 10.1016/j.jbi.2022.104047. Epub 2022 Mar 4. PMID: 35257868.
    32. Luukkonen T, Tijssen R, Persson ORT, Sivertsen G. The measurement of international scientific collaboration. Scientometrics. 1993;28(1):15-36.
    33. Kobourov SG. Force-directed drawing algorithms. In: Tamassia R, editor. Handbook of graph drawing and visualization. New York: CRC Press; 2013;383-408.
    34. Yang K, Wang L, Yang G, Jiang X. Research hotspots and trends in nursing education from 2014 to 2020: A co-word analysis based on keywords. J Adv Nurs. 2022 Mar;78(3):787-798. doi: 10.1111/jan.15010. Epub 2021 Sep 12. PMID: 34514616.
    35. de Rezende LB, Blackwell P, Goncalves M. Research focuses, trends, and major findings on project complexity: a bibliometric network analysis of 50 years of project complexity research. Proj Manage J. 2018;49(1):42-49.
    36. Lee Y, Lee Y, Seong G, Stanescu A, Hwang CS. Analysis of GIS research trends in the US with AAG conference presentations from 2000-2019. Geogr J Korea. 2019;53(4):495-508.
    37. Subbarayalu AV, Idhris M, Prabaharan S, Kamalasanan A, Samuel SA, Sakthivel M, Pattukuthu A, Pandiyarajan A, Ali MB, Purushothaman VK, Marimuthu PR. Research trends in the application of artificial intelligence in physical therapy rehabilitation: a bibliometric study. Acta Biomed. 2024;95(2):e2024087.
    38. Nogales A, Rodríguez-Aragón M, García-Tejedor ÁJ. A systematic review of the application of deep learning techniques in the physiotherapeutic therapy of musculoskeletal pathologies. Comput Biol Med. 2024 Apr;172:108082. doi: 10.1016/j.compbiomed.2024.108082. Epub 2024 Jan 29. PMID: 38461697.
    39. Murikipudi M, Azmee AA, Khan MAAH, Pei Y. CBSA: a deep transfer learning framework for assessing post-stroke exercises. In: Proceedings-2024 IEEE/ACM Connected Health: Applications, Systems and Engineering Technologies. Chase; 2024;85-96. doi: 10.1109/CHASE60773.2024.00018.
    40. Lowe SW. The use of artificial intelligence in crafting a novel method for teaching normal human gait. Eur J Physiother. 2024;1-5.
    41. Meng Y, Lee M, Clark HJY, Nguyen C, Kwon S, Schultz S, Pham NS, Schirmer D, Roh EY. Evaluation of range of motion using vision artificial intelligence (AI) in musculoskeletal medicine. J Med Artif Intell. 2024;7:22.
    42. Rossettini G, Rodeghiero L, Corradi F, Cook C, Pillastrini P, Turolla A, Castellini G, Chiappinotto S, Gianola S, Palese A. Comparative accuracy of ChatGPT-4, Microsoft Copilot and Google Gemini in the Italian entrance test for healthcare sciences degrees: a cross-sectional study. BMC Med Educ. 2024 Jun 26;24(1):694. doi: 10.1186/s12909-024-05630-9. PMID: 38926809; PMCID: PMC11210096.
    43. Liang HW, Ameri R, Band S, Chen HS, Ho SY, Zaidan B, Chang KC, Chang A. Fall risk classification with posturographic parameters in community-dwelling older adults: a machine learning and explainable artificial intelligence approach. J Neuroeng Rehabil. 2024 Jan 29;21(1):15. doi: 10.1186/s12984-024-01310-3. PMID: 38287415; PMCID: PMC10826018.
    44. Reis FJJ, Carvalho MBL, Neves GA, Nogueira LC, Meziat-Filho N. Machine learning methods in physical therapy: A scoping review of applications in clinical context. Musculoskelet Sci Pract. 2024 Sep 13;74:103184. doi: 10.1016/j.msksp.2024.103184. Epub ahead of print. PMID: 39278141.
    45. Bekbolatova M, Mayer J, Ong CW, Toma M. Transformative Potential of AI in Healthcare: Definitions, Applications, and Navigating the Ethical Landscape and Public Perspectives. Healthcare (Basel). 2024 Jan 5;12(2):125. doi: 10.3390/healthcare12020125. PMID: 38255014; PMCID: PMC10815906.
    46. Shawli L, Alsobhi M, Faisal Chevidikunnan M, Rosewilliam S, Basuodan R, Khan F. Physical therapists' perceptions and attitudes towards artificial intelligence in healthcare and rehabilitation: A qualitative study. Musculoskelet Sci Pract. 2024 Oct;73:103152. doi: 10.1016/j.msksp.2024.103152. Epub 2024 Jul 24. PMID: 39067366.

Similar Articles

The Educational Role of Cinema in Physical Sciences
Maria Sagri, Denis Vavougios and Filippos Sofos
DOI10.61927/igmin121