Help ?

IGMIN: We're glad you're here. Please click 'create a new query' if you are a new visitor to our website and need further information from us.

If you are already a member of our network and need to keep track of any developments regarding a question you have already submitted, click 'take me to my Query.'

Search

Organised by  IgMin Fevicon

Regional sites

Browse by Subjects

Welcome to IgMin Research – an Open Access journal uniting Biology, Medicine, and Engineering. We’re dedicated to advancing global knowledge and fostering collaboration across scientific fields.

Browse by Sections

At IgMin Research, we bridge the frontiers of Biology, Medicine, and Engineering to foster interdisciplinary innovation. Our expanded scope now embraces a wide spectrum of scientific disciplines, empowering global researchers to explore, contribute, and collaborate through open access.

Members

Our purpose is to accelerate innovation by enhancing interdisciplinary communication.

Articles

Our purpose is to accelerate innovation by enhancing interdisciplinary communication.

Explore Content

Our purpose is to accelerate innovation by enhancing interdisciplinary communication.

Identify Us

Our purpose is to accelerate innovation by enhancing interdisciplinary communication.

IgMin Corporation

Welcome to IgMin, a leading platform dedicated to enhancing knowledge dissemination and professional growth across multiple fields of science, technology, and the humanities. We believe in the power of open access, collaboration, and innovation. Our goal is to provide individuals and organizations with the tools they need to succeed in the global knowledge economy.

Publications Support
[email protected]
E-Books Support
[email protected]
Webinars & Conferences Support
[email protected]
Content Writing Support
[email protected]
IT Support
[email protected]

Search

Select Language

Explore Section

Content for the explore section slider goes here.

Abstract

Mukhammad Avazyazov Author at IgMin Research

Our purpose is to accelerate innovation by enhancing interdisciplinary communication.

General Science Group (1)

Research Article Article ID: igmin332
Cite

Open Access Policy refers to a set of principles and guidelines aimed at providing unrestricted access to scholarly research and literature. It promotes the free availability and unrestricted use of research outputs, enabling researchers, students, and the general public to access, read, download, and distribute scholarly articles without financial or legal barriers. In this response, I will provide you with an overview of the history and latest resolutions related to Open Access Policy.

Immobilization of 7-Iodo-8-hydroxyquinoline-5-sulfonic Acid (Ferron): A Comprehensive Review of Techniques and Applications
by Mukhammad AvazyazovAshirov MA, Eshchanova A and Shonazarov AR

7-Iodo-8-hydroxyquinoline-5-sulfonic acid (Ferron, HIQSA, Chiniofon) is a multifunctional chelating agent whose utility is significantly enhanced through immobilization onto solid supports. This comprehensive review details the chemical structure and key properties of Ferron, emphasizing it’s tridentate chelating ability derived from its hydroxyl, sulfonic acid, and iodine functional groups. The primary rationale for immobilization—improved reusability, enhanced stability, facilitated separation, and the enablement of solid-phase ap...plications—is thoroughly discussed. The review systematically examines the three main immobilization strategies: covalent bonding (e.g., using silane coupling agents on silica or functionalized polymers), physical adsorption (e.g., on anion-exchange resins like Dowex and Purolite), and encapsulation/entrapment (e.g., in sol-gel matrices or electrospun polymer nanofibers). Each technique's principles, advantages, disadvantages, and typical supports are analyzed. The diverse applications of immobilized Ferron are then explored, spanning analytical chemistry (optical oxygen and metal ion sensors, electrochemical detection, flow injection analysis), environmental remediation (heavy metal removal from wastewater, soil stabilization), and emerging biomedical uses (antimicrobial wound dressings, drug delivery scaffolds). The article concludes with a historical perspective and an outlook on recent advancements, highlighting the potential of nanomaterial-based supports, multi-functional hybrid platforms, and novel biomedical applications, while also addressing ongoing challenges such as long-term stability and selectivity.

Chemistry
Mukhammad Avazyazov

Author

Work Details

 Khorezm Mamun Academy

 Uzbekistan

Contribution by Topic Area

Why publish with us?

  • Global Visibility – Indexed in major databases

  • Fast Peer Review – Decision within 14–21 days

  • Open Access – Maximize readership and citation

  • Multidisciplinary Scope – Biology, Medicine and Engineering

  • Editorial Board Excellence – Global experts involved

  • University Library Indexing – Via OCLC

  • Permanent Archiving – CrossRef DOI

  • APC – Affordable APCs with discounts

  • Citation – High Citation Potential

Submit Your Article

Advertisement