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Abstract

Th e pervasive Internet of Th ings (IoT) integration has revolutionized industries such as medicine, environmental care, and urban development. Th e synergy 
between IoT devices and 5G cellular networks has further accelerated this transformation, providing ultra-high data rates and ultra-low latency. Th is connectivity 
enables various applications, including remote surgery, autonomous driving, virtual reality gaming, and AI-driven smart manufacturing. However, IoT devices’ real-
time and high-volume messaging nature exposes them to potential malicious attacks. Th e implementation of encryption in such networks is challenging due to the 
constraints of IoT devices, including limited memory, storage, and processing bandwidth. In a previous work [1], we proposed an ongoing key construction process, 
introducing a pivotal pool to enhance network security. Th e protocol is designed with a probability analysis to ensure the existence of a shared key between any pair of 
IoT devices, with the predefi ned probability set by the system designer. However, our earlier model faced vulnerabilities such as the “parking lot attack” and physical 
attacks on devices, as highlighted in the conclusion section. We present a complementary solution to address these issues, fortifying our previous protocol against 
cyber threats. Our approach involves the implementation of an internal Certifi cation Authority (CA) that issues certifi cates for each IoT device before joining the 
network.

Furthermore, all encryption keys are distributed by the primary IoT device using the Unix OS ‘passwd’ mechanism. If a device “disappears,” all encryption keys 
are promptly replaced, ensuring continuous resilience against potential security breaches. Th is enhanced protocol establishes a robust security framework for IoT 
networks, safeguarding against internal and external threats.

Introduction

The Internet of Things (IoT) encapsulates a diverse array of 
interconnected objects and devices utilizing sensors to gather 
environmental information. This information undergoes analysis, 
prompting devices to respond to the physical world through 
actuators [2]. The evolution of IoT technology has become 
imperative for modern society, facilitating seamless integration 
of people and things, thus forming intricate information systems 
through wireless sensor nodes and networks. While sharing 
similarities with contemporary cyber-physical systems, IoT extends 
its applications across various sectors, including smart energy 
grids, industrial control systems, healthcare, transportation, home 
appliances, and wearables [3]. Despite the operational advantages, 
integrating IoT technologies has introduced vulnerabilities, off ering 
opportunities for remote adversaries. Real-world incidents and 
proof-of-concept attacks highlight the emergence of IoT-enabled 
attacks across diverse sectors [4]. The heightened interconnectivity 
of previously isolated systems creates novel attack paths for 
remote adversaries. Innovative communication protocols have 
been developed for IoT devices characterized by limited processing 

capacity, constrained memory, and rapid battery depletion to 
address these challenges. Our prior work [1] introduced a protocol 
to address key distribution challenges within networks of small, 
resource-constrained devices susceptible to three distinct attacks: 
the parking lot attack, exposure of the keys dictionary, and physical 
attacks. The fi rst vulnerability, the parking lot attack occurs when 
an attacker infi ltrates the parking lot network, gaining access to 
hosts within the internal network. In our context, the proposed 
protocol›s initial phase involves determining the Controller 
device, creating a vulnerability to an «in the parking lot» attacker 
assuming network control, as illustrated in Figure 1.

The second vulnerability involves the exposure of the keys 
dictionary. If an attacker successfully intrudes on the device, they 
can easily access the keys’ fi le, necessitating protection for this 
critical fi le. The third vulnerability pertains to physical attacks on 
the IoT network, as depicted in Figure 2. 

Therefore, this research complements the previous work 
and shows how the three vulnerabilities can be dealt with. The 
remainder of the paper is organized as follows. Section two outlines 
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three new methods: integrating a local certifi cate authority method 
demonstrating how to confi gure a certifi cate for each device, a 
novel mechanism for securing the key dictionary, and a technique 
ensuring network security even if a device disappears. The 
implementation details are explained in Section 3. The upgraded 
and invulnerable protocol is presented in Section 4. Experiment 
results are detailed in Section 5. Finally, conclusions drawn from 
this research are presented in Section 6.

Related work

Eschenauer and Gligor [5] introduced a key-management 
scheme incorporating selective distribution and revocation of 
keys to sensor nodes. This scheme relies on probabilistic key 
sharing within a random graph, utilizing protocols for shared-
key discovery, path-key establishment, key revocation, re-keying, 
and incremental addition of nodes. Notably, their work does 
not address IoT resource constraints, a focus of our research. 
Alagheband and Aref [6] analyzed the applicability of public 
key cryptography, pre-shared keys, and link-layer-oriented Key 
Management Systems (KMS) for sensor nodes within the IoT 

context. Their proposed solution employs predefi ned keys, while 
our work emphasizes the dynamic construction of keys, allowing for 
swift responses to unexpected events. In this context, we highlight 
several Key Management System (KMS) solutions tailored to the 
IoT domain that diff er from our approach. Sciancalepore, et al. [7] 
proposed a Key Management Protocol for mobile and industrial 
IoT systems, emphasizing robust key negotiations, lightweight 
node authentication, fast re-keying, and effi  cient protection 
against replay attacks. Their solution leverages ECC constructions, 
key exchange, and implicit certifi cates, facilitating seamless 
integration into security protocol exchanges like 802.15.4. Roman, 
et al. [8] proposed key management mechanisms facilitating the 
negotiation of specifi c security credentials between two remote 
devices, providing shared keys for sensors within the same 
network. Wazid, et al. [9] designed a secure, lightweight three-
factor remote user authentication scheme for IoT, featuring 
automated validation of Internet security protocols, offl  ine sensing 
node registration, and sensing node anonymity. Benslimane 
and BenAhmed [10] introduced a lightweight key management 
protocol enabling constrained nodes to transmit captured 
data securely to an internet host. Mahmood and Ghafoor [11] 
proposed an Effi  cient Key Management (EKM) scheme tailored 
for multiparty communication-based scenarios. Their session key 
management protocol employs a symmetric polynomial for group 
members, with the polynomial generation method incorporating 
security credentials and a secure hash function. While these 
works contribute valuable insights to IoT key management, our 
approach distinguishes itself by addressing resource constraints 
through dynamic key construction, ensuring a responsive and 
secure network environment. In the subsequent sections, we detail 
three novel methods to fortify our protocol against vulnerabilities. 
An overview of new IoT protocols and security threats appears in 
[12-14].

Our contribution 

Our research contribution focuses on the development of three 
new methods aimed at addressing vulnerabilities within the local 
networks of IoT devices. Firstly, the “Local Certifi cate Authority” 
method helps prevent parking lot attacks. Secondly, the “Own 
Keywords Dictionary” method mitigates the risk of dictionary 
attacks on keys. Lastly, the “Detecting Missing Devices” method 
helps mitigate the risk of physical attacks on IoT devices within the 
local network.

The new methods 

Our proposed solution incorporates three novel methods to 
enhance the security of the IoT network: The Own/Local Certifi cate 
Authority method, the Own/Local Keywords Dictionary method, 
and the Detecting Missing Devices Method.

Own/local certificate authority method 

To counter the Parking Lot attack, where a malicious device 
poses as the Primary to seize control of key generation and 
distribution, we introduce the Own/Local Certifi cate Authority 
method (Figures 3,4). This method involves the following steps:

Figure 1: Demonstration of the parking lot attack.

Figure 2: Smart home concept based on IoT.
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device’s reliability. Once connected to the network, the daemon 
verifi es the certifi cate fi le’s existence, correctness, and reliability. 
Consider that the certifi cate fi le may not exist, is not valid, and/or 
is invalid (fake).

Step 4: Creation of a key file and its encryption

During the initialization of the Controller, a “Key Pool” is 
created, encrypted, and saved in the device’s memory. This “Key 
Pool” is the heart of our method, because the proposed protocol 
relies on probabilistic key sharing among the IoT devices of a 
random graph that ensures the existence of a common key between 
any pair of IoT devices in a predefi ned probability which is set by 
the system designer.

Step 5: Creating a public key for the home network

The Controller generates a public key for the home network. 

Step 1: Certificate creation

Before a device enters the network, it undergoes an “initial 
installation,” during which a unique encrypted code is installed. This 
code serves as a certifi cate, indicating the device’s trustworthiness 
to enter the home network, defi ne itself as a Controller or node, 
and communicate with other devices in the network [15].

Step 2: Finding a controller in the home network

An identifi cation step is initiated for each device before it 
connects to the network. Only after identifi cation can the primary 
be determined (if one does not exist in the network) or identifi ed as 
a device in the home network.

Step 3: Creating a daemon

A daemon, a background process, is created to check the 

 
-----BEGIN CERTIFICATE-----
MIIC2TCCAcGgAwIBAgIUXn4msF6ONA8lWcehVqd1xxdRvYkwDQYJKoZIhvcNAQEL\nBQAwEjEQMA4GA1UEA
wwHQ29ycCBDQTAeFw0yMDA0MjcxODA0MjBaFw0yMjA4MDEx\nODA0MjBaMBIxEDAOBgNVBAMMB0NvcnAgQ0
EwggEiMA0GCSqGSIb3DQEBAQUAA4IB\nDwAwggEKAoIBAQC8JqeBHwVnmJkeOKLwqMcil/nY4QBLDsAg4LK
hhzFAB/SvJ16F\norqip2jLuRhpxrPNUYa9p8+ZPZziAL7ir68csnJI+UlLU7XV3+TghiaHVsd4lVz7\nHB
RhMLQcFQvnEyC5sfm84fptetlL4HN8jJUda/M26kxlHidJRCL221R9g+/RI113\n73tBX7iZSAcBTv/sOnd
EjVquYipOQXIZwRJ4ZXZ29K4UdoW+9iMCvhtVPCHz4FEl\nPBFn2vuqRg13EcZ6X3/83VJaO5TSh7Qzl87M
VmfBtGBWvib5gXxPEY1zOnhojfxc\nEPkffyHauwyORFkpaE00LkrkNjxNEQ5qhCKHAgMBAAGjJzAlMBIGA
1UdEQQLMAmC\nB0NvcnAgQ0EwDwYDVR0TAQH/BAUwAwEB/zANBgkqhkiG9w0BAQsFAAOCAQEAZyMd\n5eu7
6geBT8yobTyovhPUq63+9BWvmUViNhukZSFX1zKI/8NG1QrAEwG1Rai2yTU/\n07s5XBRwGIcRuFC1tcT7o
qAjHYDQw+3RgYYd+isPUo3Mi7SSWQYpJWmk7ICmqYzy\nlS5uk4iZatPWFVwL4XcH9ssgTVTK3kIdG9LKPP
z/4KwlBQISxYi5u9pSwCum+gIS\nx2+Vc7jJGCUEP1iMLPuxpOHIns9FusfzPfRfApFQRqZfxBO2Hpewoj1
pbb6HckAJ\nVlOyV5KcAunC9UsUtliwN3eFef+U/tNakYtcZjzqn1R5hlLBfaENCwdG4pdvuFw7\na/a5r9
CF+SDw0tldZw 
-----END CERTIFICATE----- 

Figure 3: An example of the generated certifi cate for device #1.

Figure 4: Th e Certifi cate of device#1 (for a sharp image, zoom in).
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An example of the dedicated daemon (just in the Controller) 
that starts running immediately after distributing the keys to all 
devices:

1) Every 20 minutes, ping to all devices in the local network

>> ping device-1

Pinging device-1 with 32 bytes of data:

Reply from device-1: bytes=32 time=222ms TTL=115

…

Ping statistics for device-1:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

…

>> ping device-2

Pinging device-2 with 32 bytes of data:

Request timed out.

…

Ping statistics for device-2:

…

…

>>ping device-n

…

2) Since there is no response from device 2, after 3 minutes

>> ping device-2

Pinging device-2 with 32 bytes of data:

Request timed out.

…

Ping statistics for device-2:

…

3) Since there is no response from device 2, after 3 minutes

>> ping device-2

Pinging device-2 with 32 bytes of data:

Request timed out.

…

Ping statistics for device-2:

…

4) Immediately after the third failure, the  Controller sends 

When a new device joins the home network, it receives, from 
the Controller, the shared public key and a group of keys with 
randomly selected indexes from the key pool. They ensure the 
home network’s public key is shared in a conversation between 
two devices.

Step 6: Communication between two devices on the 
home network

It checks to ensure that both devices are from the same home 
network and that the public shared key for the home network is 
equal. They fi nd a shared key to encrypt messages and securely 
exchange information.

Step 7: Sending encrypted messages

When a device wants to communicate with another, it sends 
an encrypted message using AES encryption. The encryption key 
is the shared key. The receiving device decrypts the message using 
the same key.

Own keywords dictionary method 

We introduce the Own Keywords Dictionary method to mitigate 
the risk of dictionary key attacks on an IoT device within the 
local network. This could lead to key discovery and compromise 
the network. This mechanism operates like the safeguarding 
mechanism for password and shadow fi les in the UNIX system. 
Access to the keyword fi le is restricted, mirroring the root’s 
protection of critical system fi les (e.g., cat/keyword: Permission 
denied). The keyword fi le comprises the following data:

• Device name - visible data

• Key index number - encrypted data (SHA256)

• Keys - Encrypted data (SHA256).

• Last key change time - visible data

• Key Expiration Time - Visible data

An example of the records in the keyword fi le (Figure 5).

Detecting missing devices method 

To prevent a malicious opponent from “snatching” a device 
and extracting the information required to hack the network, a 
dedicated daemon in the Controller device checks all active devices. 
The test will be performed as follows:

1) For each time frame (e.g., 20 minutes), the Controller sends 
a ping to each IoT device and maintains a list of all those 
who returned an answer (Reply from) and those who did 
not (Request timed out).

2) Select those who did not return an answer from the list, 
wait a time (e.g., 3 minutes), and send a ping again.

3) After three unanswered attempts, the Controller exchanges 
keys for all IoT devices in the local network (Repeat steps 
3 through 6).
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new keys to all devices and sends a cancellation message on the 
previous keys.

System implementation 

1. Certifi cate authority method: Creating a certifi cate: 
Before a device enters the network, it undergoes an “initial 
installation,” during which a fi le is installed. This fi le 
contains a unique encrypted code certifying the device’s 
trustworthiness to enter the home network, defi ne itself 
as a Controller or node, and communicate with other 
devices. The certifi cate creation process occurs as follows: 
An installer runs an installation fi le during the initial 
installation on the device. At the end of the installation, a 
fi le is saved in the device›s memory containing a unique 
code of approximately 1600 characters. When the device 
connects to the network, it is required to ensure the 
existence of the certifi cate fi le. A daemon continuously runs 
in the background to verify the fi le›s presence and integrity, 
preventing hacking attempts. If the certifi cate fi le is not 
found, the system identifi es an intruder, issues a warning, 
and halts all processes on the device.

2. Reliability check: When the device is connected to the 
network, a unique daemon operates in the background 
to verify the certifi cate fi le’s correctness and existence. If 
the fi le is incorrect or missing, the system deactivates the 
device from the home network and encrypts and blocks the 
key fi le to prevent hacking attempts.

3. Creating a shared public key for the home network: 
The Controller generates a public key saved in the certifi cate 
fi le. When a device connects to the network, the Controller 
sends the shared public keys to the home network. When 
two devices initiate a conversation, a check ensures that 
both devices share the same home network’s public key. 
Only then can the devices communicate and exchange 
messages.

4. Creating and encrypting the key fi le: When a 
Controller device connects to the network, it generates a 
fi le of keys shared with the devices. Each device receives 
a list to fi nd a shared key for encryption. After the fi le is 
created, it is encrypted to protect its contents. Devices use 
the shared key to encrypt messages passing through the 

network. Implementing the Certifi cate Authority Method 
establishes a robust framework for secure key management 
and communication within the IoT network, safeguarding 
against unauthorized access and potential attacks.

Own keywords dictionary method:

  Pseudo code for the key security mechanism

For every device: 

• Get a list of key indices from the device interested in 
communicating. 

• Encrypt all indexes received and get a list of encrypted 
index results.

Loop:

Compare the encryption result (of each index) to all results in 
the “Index of Key” column

o If a match was found: 

 Move to the “Keys” column in the same row, decrypt the 
encryption result, and return it

o Otherwise:

Return “match was not found.”

end loop;

The root also protects this.

Detecting missing devices method: The following 
Python code implements the “Detecting Missing Devices” Method 
(Figure 6).

The new immune protocol 

Following, we describe the protocol in further detail:

1) Preliminary step 

• The local network administrator, as Certifi cate Authority, 
must update a local certifi cate for each IoT device connected 
to the network; without the certifi cate, the device will not 
belong to the network under any conditions.

Device name 
Index Index of 

Keys 
Not Part 
of the file 

Keys 
Not Part of 
the file 

Salt SHA256(Index of 
Key) 

SHA256(Keys) Last key 
change time 

Key 
Expiration 
Time 

 
1 

107 123 1100110
01100 

3346f2bbf6c34bd2dbe
28bd1bb657d0e9c3739
2a1d5ec9929e6a5df47
63ddc2d 

fd2da12cc87478c1f
d503ce40b11e77160
9163eee279ba4db71
64c628ff6f2ee 

18:00 
01/01/22 

18:00 
01/02/22 

2 1056 456 0000111
10000 

e8c5e943ad4fd9d115c
2baacd110acddee7f66e
c24aa177efa6780f5641
ce277 

92847366066d8b97
3414ccd211d932c25
5b37282e7428f2b43
067ed355eae72d 

18:00 
01/01/22 

18:00 
01/02/22 

Figure 5: Th e structure of the keyword fi le.
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to “Controller FOUND.” It broadcasts two messages: “I AM 
the Controller” and “myCertifi cate.” If it receives an “IS 
THERE Controller” message, it will send a private message 
to that “I AM the Controller & myCertifi cate” device.

3) The Controller defi nes the key pool size

• The Controller calculates the number of keys it must 
produce and the number of keys it must divide to each node 
according to physical data such as memory size and the 
number of nodes in the network. By using mathematical 
calculations, conclude the size of the pool.

• The Controller generates a public key, which he saves in the 
certifi cate fi le.

4) The Controller requests the manufacturing of 
distributed keys

• The Controller sends “Controller NEEDS KEY & 

• A daemon will run according to the certifi cate’s expiration 
date, which will create a new certifi cate for each device, 
make sure that the fi le exists, is a valid and reliable 
certifi cate, and makes sure that the fi le exists, is a valid and 
reliable certifi cate. 

2) Determining the controller device as soon as an 
IoT device enters the network, it broadcasts two messages on the 
network: “IS THERE Controller & myCertifi cate” and waits for 
some time for a response:

• If it receives an “I AM the Controller” message, it switches 
to “Controller FOUND” and stops the search for the 
Controller. From then on, it will only listen to messages 
from the Controller (to get the keys and perform the rest of 
the protocol stages) until a secure network is established.

• If it does not receive any answer (twice or there is a failure 
in the network), it will declare itself a Controller and move 

import time 
import os 
 
hostnames = [ 
    '10.40.161.2', 
    '10.40.161.3', 
    '10.40.161.4', 
    '10.40.161.5', 
] 
 
For hostname in hostnames: 
    time.sleep(1200) 
    response = os.system('ping -c 1 ' + hostname) 
    if response == 0: 
        print(hostname, 'is UP') 
    Else: 
        time.sleep(180) 
        response1 = os.system('ping -c 1 ' + hostname) 
        if response1 != 0: 
           time.sleep(180) 
           response2 = os.system('ping -c 1 ' + hostname) 
           if response2 != 0: 
               print(hostname, 'is down, Controller sends new keys') 
               Fernet(key) 
           else: 
       print(hostname, 'is UP') 
        Else: 
              print(hostname, 'is UP') 

Figure 6: Python code for detecting missing devices.
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myCertifi cate” to each node in the network about the 
number of keys it must generate.

• The Controller generates a private and public RSA key 
and sends its public key to each node in a “Controller 
PUBLIC KEY” message. The safety of the proposed method 
requires the transfer of secure data (for example by RSA) 
between the devices because this data includes encryption/
decryption keys and certifi cate fi les.

5) Creation of distributed keys by each node in the 
network

• Each node in the network creates keys, encrypts them with 
a public RSA key (of the Controller), and sends them to the 
Controller.

• The Controller accepts the generated keys from each node 
and consolidates them into a key pool.

6) Distribution of keys

• Each client (IoT device) generates a private and public 
RSA key and sends the public key to the Controller in a 
CLIENT PUBLIC KEY & “myCertifi cate” messages so that 
the Controller can encrypt the subset of keys it sends to the 
client. 

• The Controller raffl  es k keys from the pool and sends the 
client each key in the CLIENT RING KEYS message while 
it is encrypted by the client’s public key with the index of 
the key.

• Once all keys are sent, the Controller sends a CLIENT RING 
END message, and the client switches to CLIENT GOT 
KEYS and decrypts each key sent to it with its private key.

• A unique daemon starts to run in the background, and if the 
fi le is incorrect or does not exist, the system will deactivate 
this device from the home networking (to which it was 
connected), encrypt, and block the key fi le against hacking.

7) Finding a shared key

• Each node that receives keys sends an “I AM ON THE 
NETWORK & myCertifi cate” message so that the other 
nodes on the network recognize it.

• When two devices start a conversation, a check is made that 
verifi es that both devices have the same home network’s 
public key, 

• Node#1 will send a “verify certifi cate” message to node#2, 
and node#2 will return a public key in response. Node#1 
will check that the public key returned by Node#2 is the 
same as the one it received from the Controller.

• When a node wants to exchange encrypted messages with 
another node in the network, it sends a “CLIENT START 
SESSION & myCertifi cate” message with its list of indexes 
(of keys). The node that receives the message checks for 
overlaps between its indexes and the indexes (of keys) it 

received. If it fi nds a shared key (which will happen with a 
probability of 80% - 90%), it sends the CLIENT COMMON 
INDEX message with the shared key, and in the absence 
of a shared key, it returns a message of -1. The two nodes 
maintain the index of the key with which they will exchange 
encrypted messages.

8) Secure network

• When a node (IoT device) wants to communicate with 
another node, it sends a MESSAGE ENC DATA message in 
which AES encrypts the information it wants to transmit, 
and the encryption key is the shared key. The receiving 
node decrypts with the same key.

• A new node that enters the network goes through the 
protocol steps and can communicate securely with any 
node on the network.

• When a node disconnects from the network, it does not 
interfere with the communication between the other nodes, 
nor does it reveal all the encryption keys. 

9) Missing devices detected

• For each time frame (e.g., 20 minutes), the Controller sends 
a ping to each IoT device and maintains a list of all those 
who returned an answer (Reply from) and those who did 
not (Request timed out).

• Selects from the list those who did not return an answer, 
wait a time (e.g., 3 minutes), and send a ping again.

• After three unanswered attempts, the Controller exchanges 
keys for all IoT devices in the local network (Repeat steps 
3 through 6).

Experiment results

In this section, we demonstrate the operation of the innovative 
protocol (appears in section 3) we developed in this research 
with the new approaches to dealing with the vulnerabilities of the 
previous protocol. We performed experiments in our laboratory 
with 3 Raspberry Pi 3 Model devices (#1: 10.0.0.26, #2: 10.0.0.10, 
#3: 10.0.0.5).

Step 1: Preliminary step as described in section 4, step 1.

Updating a local certifi cate for each IoT device by the network 
manager, as follows (Figure 7).

Step 2: Determine who the Controller device is as 
described in section 4, step 2.

This operation is done by device #1, which looks for the 
Controller device on the network, sends a message in broadcast 
with its certifi cate to other devices, and declares itself a Controller. 
The other instruments would ignore this message if the device 
were without a certifi cate (Figure 8).

Step 3: The Controller defi nes the key-pool size as described 
in section 4, step 3.
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Figure 7: Python code for updating a local certifi cate for each IoT device.

Figure 8: Python code results for determining who is the Controller device.
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Now, Device #1 calculates the required pool of keys and the 
number of keys each device will receive, ensuring an overlap of at 
least one key between any two devices on this network with a 90% 
probability. In our case (3 devices), a pool of 152 and 16 keys per 
device is required (Figure 9).

Step 4: Controller requests  manufacturing of distributed keys 
as described in section 4, step 4. 

Device #1 (the Controller) sends a message in broadcast for all 
devices to generate keys (Figure 10).

Step 5: Create distributed keys by each node in the network as 
described in section 4, step 5. 

Each node in the network generates keys as required. These 
keys are sent to the Controller encrypted with the Controller’s 
public key (Figure 11).

Step 6: Distribution of keys as described in section 4, 
step 6.

Each device generates a private and public RSA key and sends 
the public key to the Controller with his certifi cate. The Controller 
(#1) can now encrypt the subset of keys and send it to the other 
devices (#2 and #3) (Figure 12).

Step 7 : Finding a shared key as described in section 
4, step 7

Each node that receives keys sends an “I AM ON THE 
NETWORK & myCertifi cate” message in the broadcast. When 
another node wants to exchange encrypted messages, it sends 
CLIENT START SESSION & myCertifi cate messages with its list of 
indexes (of keys). Here, device #2 got a message from device #1 to 
fi nd a shared key (148) (Figure 13).

 

Figure 9: Python code results for defi ning the key-pool size by the Controller device.

 

Figure 10: Python code results for distributing keys by the Controller device.
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Figure 11: Python code results for the creation of distributed keys by each node.

ys d se d o e o e dev ces (# d #3). ( gu e )

 

Figure 12: Python code results for generating a private and public RSA key.
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Step 8: Secure network as described in section 4, step 8

Here, node #2 wants to  communicate with node #3 (none of 
them is the Controller), and the shared key between them is 42. 
node #2 sends a MESSAGE ENC DATA message in which AES 
encrypts the information it wants to transmit, and the encryption 
key is the shared key. Node #3 decrypts with the same key (Figure 
14).

Step 9:  Detection of missing devices as described in section 
4, step 8

To ensure that all devices in the network are alive, the Controller 
(#1) sends a ping message every 20 minutes to each node (e.g., #3). 
If there is no answer from a particular device, the current batch of 
keys is canceled and immediately replaced (Figure 15).

Conclusion and future work

In conclusion, our endeavors to enhance the security of 
IoT networks have led to signifi cant strides, building upon 
the foundation laid in our previous work as mentioned 
previously. The initial protocol addressed key construction and 
distribution challenges for IoT devices with limited resources. 
As a complementary extension, this paper introduces a fortifi ed 
protocol designed to withstand potential cyberattacks.

Key upgrades

1) Device-specifi c certifi cates: We implemented unique 
certifi cates for each IoT device, enhancing trust and preventing 

unauthorized access to the network during the initial installation 
phase.

2) Robust key dictionary security: Recognizing the 
vulnerability of the key dictionary, we implemented stringent 
security measures, restricting unauthorized access and fortifying 
the encryption keys against potential breaches.

3) Swift key replacement mechanism: In response to 
the disappearance of an IoT device, we introduced a mechanism 
for immediate key replacement. This proactive measure ensures 
continuous network security, mitigating the risk of compromised 
keys.

Future work

While the enhancements show promise in controlled laboratory 
conditions with three devices, future work involves expanding 
the scope of testing to a larger scale. Real-world deployment and 
evaluation will be pivotal in understanding the practicality and 
eff ectiveness of the enhanced protocol in diverse IoT environments. 
The following aspects will be explored in future work:

1) Large-scale testing: Rigorous testing on a larger scale 
will provide insights into the protocol’s performance and resilience 
under dynamic and extensive IoT deployments.

2) Real-world deployment: Practical implementation 
of the enhanced protocol in real-world scenarios will be crucial 
in validating its eff ectiveness and identifying any unforeseen 
challenges.

 

 

Figure 13: Python code results for fi nding a shared key.
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Figure 14: Python code results for communication between node #2 and node #3.

Figure 15: Python code results for detection of missing devices.

In summary, our enhanced protocol represents a crucial step 
towards creating a robust and secure IoT ecosystem. Future 
endeavors will focus on translating these advancements into 
practical solutions, addressing the ever-evolving challenges in IoT 
security.
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