
www.igminresearch.com

ISSN: 2995-8067

A Multidisciplinary
Open Access
Journal

084

Network Security | Data Security | Internet Security T O P I C (S)
TECHNOLOGY S U B J E C T

Abstract

Th e pervasive Internet of Th ings (IoT) integration has revolutionized industries such as medicine, environmental care, and urban development. Th e synergy
between IoT devices and 5G cellular networks has further accelerated this transformation, providing ultra-high data rates and ultra-low latency. Th is connectivity
enables various applications, including remote surgery, autonomous driving, virtual reality gaming, and AI-driven smart manufacturing. However, IoT devices’ real-
time and high-volume messaging nature exposes them to potential malicious attacks. Th e implementation of encryption in such networks is challenging due to the
constraints of IoT devices, including limited memory, storage, and processing bandwidth. In a previous work [1], we proposed an ongoing key construction process,
introducing a pivotal pool to enhance network security. Th e protocol is designed with a probability analysis to ensure the existence of a shared key between any pair of
IoT devices, with the predefi ned probability set by the system designer. However, our earlier model faced vulnerabilities such as the “parking lot attack” and physical
attacks on devices, as highlighted in the conclusion section. We present a complementary solution to address these issues, fortifying our previous protocol against
cyber threats. Our approach involves the implementation of an internal Certifi cation Authority (CA) that issues certifi cates for each IoT device before joining the
network.

Furthermore, all encryption keys are distributed by the primary IoT device using the Unix OS ‘passwd’ mechanism. If a device “disappears,” all encryption keys
are promptly replaced, ensuring continuous resilience against potential security breaches. Th is enhanced protocol establishes a robust security framework for IoT
networks, safeguarding against internal and external threats.

Introduction

The Internet of Things (IoT) encapsulates a diverse array of
interconnected objects and devices utilizing sensors to gather
environmental information. This information undergoes analysis,
prompting devices to respond to the physical world through
actuators [2]. The evolution of IoT technology has become
imperative for modern society, facilitating seamless integration
of people and things, thus forming intricate information systems
through wireless sensor nodes and networks. While sharing
similarities with contemporary cyber-physical systems, IoT extends
its applications across various sectors, including smart energy
grids, industrial control systems, healthcare, transportation, home
appliances, and wearables [3]. Despite the operational advantages,
integrating IoT technologies has introduced vulnerabilities, off ering
opportunities for remote adversaries. Real-world incidents and
proof-of-concept attacks highlight the emergence of IoT-enabled
attacks across diverse sectors [4]. The heightened interconnectivity
of previously isolated systems creates novel attack paths for
remote adversaries. Innovative communication protocols have
been developed for IoT devices characterized by limited processing

capacity, constrained memory, and rapid battery depletion to
address these challenges. Our prior work [1] introduced a protocol
to address key distribution challenges within networks of small,
resource-constrained devices susceptible to three distinct attacks:
the parking lot attack, exposure of the keys dictionary, and physical
attacks. The fi rst vulnerability, the parking lot attack occurs when
an attacker infi ltrates the parking lot network, gaining access to
hosts within the internal network. In our context, the proposed
protocol›s initial phase involves determining the Controller
device, creating a vulnerability to an «in the parking lot» attacker
assuming network control, as illustrated in Figure 1.

The second vulnerability involves the exposure of the keys
dictionary. If an attacker successfully intrudes on the device, they
can easily access the keys’ fi le, necessitating protection for this
critical fi le. The third vulnerability pertains to physical attacks on
the IoT network, as depicted in Figure 2.

Therefore, this research complements the previous work
and shows how the three vulnerabilities can be dealt with. The
remainder of the paper is organized as follows. Section two outlines

Strengthening IoT Network
Protocols: A Model Resilient
Against Cyber Attacks
Guy Leshem* and Menachem Domb*
Department of Computer Science, Ashkelon Academic College (AAC), Ashkelon, Israel

*Correspondence: Guy Leshem, Department of Computer Science, Ashkelon Academic
College (AAC), Ashkelon, Israel, Email: gialsm@edu.aac.ac.il

Menachem Domb, Department of Computer Science, Ashkelon Academic College (AAC),
Ashkelon, Israel, Email: dombmnc@edu.aac.ac.il

Review ArticleArticle Information
Submitted: January 03, 2024
Approved: February 09, 2024
Published: February 12, 2024

How to cite this article: Leshem G, Domb M. Strengthening IoT
Network Protocols: A Model Resilient Against Cyber Attacks.
IgMin Res. Feb 12, 2024; 2(2): 084-096. IgMin ID: igmin149;
DOI: 10.61927/igmin149; Available at:
www.igminresearch.com/articles/pdf/igmin149.pdf

Copyright: © 2024 Leshem G, et al. Th is is an open access article
distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

https://crossmark.crossref.org/dialog/?doi=10.61927/igmin149&domain=pdf&date_stamp=2024-02-12

TECHNOLOGY February 12, 2024 - Volume 2 Issue 2

DOI: 10.61927/igmin1492995-8067ISSN

085

three new methods: integrating a local certifi cate authority method
demonstrating how to confi gure a certifi cate for each device, a
novel mechanism for securing the key dictionary, and a technique
ensuring network security even if a device disappears. The
implementation details are explained in Section 3. The upgraded
and invulnerable protocol is presented in Section 4. Experiment
results are detailed in Section 5. Finally, conclusions drawn from
this research are presented in Section 6.

Related work

Eschenauer and Gligor [5] introduced a key-management
scheme incorporating selective distribution and revocation of
keys to sensor nodes. This scheme relies on probabilistic key
sharing within a random graph, utilizing protocols for shared-
key discovery, path-key establishment, key revocation, re-keying,
and incremental addition of nodes. Notably, their work does
not address IoT resource constraints, a focus of our research.
Alagheband and Aref [6] analyzed the applicability of public
key cryptography, pre-shared keys, and link-layer-oriented Key
Management Systems (KMS) for sensor nodes within the IoT

context. Their proposed solution employs predefi ned keys, while
our work emphasizes the dynamic construction of keys, allowing for
swift responses to unexpected events. In this context, we highlight
several Key Management System (KMS) solutions tailored to the
IoT domain that diff er from our approach. Sciancalepore, et al. [7]
proposed a Key Management Protocol for mobile and industrial
IoT systems, emphasizing robust key negotiations, lightweight
node authentication, fast re-keying, and effi cient protection
against replay attacks. Their solution leverages ECC constructions,
key exchange, and implicit certifi cates, facilitating seamless
integration into security protocol exchanges like 802.15.4. Roman,
et al. [8] proposed key management mechanisms facilitating the
negotiation of specifi c security credentials between two remote
devices, providing shared keys for sensors within the same
network. Wazid, et al. [9] designed a secure, lightweight three-
factor remote user authentication scheme for IoT, featuring
automated validation of Internet security protocols, offl ine sensing
node registration, and sensing node anonymity. Benslimane
and BenAhmed [10] introduced a lightweight key management
protocol enabling constrained nodes to transmit captured
data securely to an internet host. Mahmood and Ghafoor [11]
proposed an Effi cient Key Management (EKM) scheme tailored
for multiparty communication-based scenarios. Their session key
management protocol employs a symmetric polynomial for group
members, with the polynomial generation method incorporating
security credentials and a secure hash function. While these
works contribute valuable insights to IoT key management, our
approach distinguishes itself by addressing resource constraints
through dynamic key construction, ensuring a responsive and
secure network environment. In the subsequent sections, we detail
three novel methods to fortify our protocol against vulnerabilities.
An overview of new IoT protocols and security threats appears in
[12-14].

Our contribution

Our research contribution focuses on the development of three
new methods aimed at addressing vulnerabilities within the local
networks of IoT devices. Firstly, the “Local Certifi cate Authority”
method helps prevent parking lot attacks. Secondly, the “Own
Keywords Dictionary” method mitigates the risk of dictionary
attacks on keys. Lastly, the “Detecting Missing Devices” method
helps mitigate the risk of physical attacks on IoT devices within the
local network.

The new methods

Our proposed solution incorporates three novel methods to
enhance the security of the IoT network: The Own/Local Certifi cate
Authority method, the Own/Local Keywords Dictionary method,
and the Detecting Missing Devices Method.

Own/local certificate authority method

To counter the Parking Lot attack, where a malicious device
poses as the Primary to seize control of key generation and
distribution, we introduce the Own/Local Certifi cate Authority
method (Figures 3,4). This method involves the following steps:

Figure 1: Demonstration of the parking lot attack.

Figure 2: Smart home concept based on IoT.

TECHNOLOGY February 12, 2024 - Volume 2 Issue 2

DOI: 10.61927/igmin1492995-8067ISSN

086

device’s reliability. Once connected to the network, the daemon
verifi es the certifi cate fi le’s existence, correctness, and reliability.
Consider that the certifi cate fi le may not exist, is not valid, and/or
is invalid (fake).

Step 4: Creation of a key file and its encryption

During the initialization of the Controller, a “Key Pool” is
created, encrypted, and saved in the device’s memory. This “Key
Pool” is the heart of our method, because the proposed protocol
relies on probabilistic key sharing among the IoT devices of a
random graph that ensures the existence of a common key between
any pair of IoT devices in a predefi ned probability which is set by
the system designer.

Step 5: Creating a public key for the home network

The Controller generates a public key for the home network.

Step 1: Certificate creation

Before a device enters the network, it undergoes an “initial
installation,” during which a unique encrypted code is installed. This
code serves as a certifi cate, indicating the device’s trustworthiness
to enter the home network, defi ne itself as a Controller or node,
and communicate with other devices in the network [15].

Step 2: Finding a controller in the home network

An identifi cation step is initiated for each device before it
connects to the network. Only after identifi cation can the primary
be determined (if one does not exist in the network) or identifi ed as
a device in the home network.

Step 3: Creating a daemon

A daemon, a background process, is created to check the

-----BEGIN CERTIFICATE-----
MIIC2TCCAcGgAwIBAgIUXn4msF6ONA8lWcehVqd1xxdRvYkwDQYJKoZIhvcNAQEL\nBQAwEjEQMA4GA1UEA
wwHQ29ycCBDQTAeFw0yMDA0MjcxODA0MjBaFw0yMjA4MDEx\nODA0MjBaMBIxEDAOBgNVBAMMB0NvcnAgQ0
EwggEiMA0GCSqGSIb3DQEBAQUAA4IB\nDwAwggEKAoIBAQC8JqeBHwVnmJkeOKLwqMcil/nY4QBLDsAg4LK
hhzFAB/SvJ16F\norqip2jLuRhpxrPNUYa9p8+ZPZziAL7ir68csnJI+UlLU7XV3+TghiaHVsd4lVz7\nHB
RhMLQcFQvnEyC5sfm84fptetlL4HN8jJUda/M26kxlHidJRCL221R9g+/RI113\n73tBX7iZSAcBTv/sOnd
EjVquYipOQXIZwRJ4ZXZ29K4UdoW+9iMCvhtVPCHz4FEl\nPBFn2vuqRg13EcZ6X3/83VJaO5TSh7Qzl87M
VmfBtGBWvib5gXxPEY1zOnhojfxc\nEPkffyHauwyORFkpaE00LkrkNjxNEQ5qhCKHAgMBAAGjJzAlMBIGA
1UdEQQLMAmC\nB0NvcnAgQ0EwDwYDVR0TAQH/BAUwAwEB/zANBgkqhkiG9w0BAQsFAAOCAQEAZyMd\n5eu7
6geBT8yobTyovhPUq63+9BWvmUViNhukZSFX1zKI/8NG1QrAEwG1Rai2yTU/\n07s5XBRwGIcRuFC1tcT7o
qAjHYDQw+3RgYYd+isPUo3Mi7SSWQYpJWmk7ICmqYzy\nlS5uk4iZatPWFVwL4XcH9ssgTVTK3kIdG9LKPP
z/4KwlBQISxYi5u9pSwCum+gIS\nx2+Vc7jJGCUEP1iMLPuxpOHIns9FusfzPfRfApFQRqZfxBO2Hpewoj1
pbb6HckAJ\nVlOyV5KcAunC9UsUtliwN3eFef+U/tNakYtcZjzqn1R5hlLBfaENCwdG4pdvuFw7\na/a5r9
CF+SDw0tldZw
-----END CERTIFICATE-----

Figure 3: An example of the generated certifi cate for device #1.

Figure 4: Th e Certifi cate of device#1 (for a sharp image, zoom in).

TECHNOLOGY February 12, 2024 - Volume 2 Issue 2

DOI: 10.61927/igmin1492995-8067ISSN

087

An example of the dedicated daemon (just in the Controller)
that starts running immediately after distributing the keys to all
devices:

1) Every 20 minutes, ping to all devices in the local network

>> ping device-1

Pinging device-1 with 32 bytes of data:

Reply from device-1: bytes=32 time=222ms TTL=115

…

Ping statistics for device-1:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

…

>> ping device-2

Pinging device-2 with 32 bytes of data:

Request timed out.

…

Ping statistics for device-2:

…

…

>>ping device-n

…

2) Since there is no response from device 2, after 3 minutes

>> ping device-2

Pinging device-2 with 32 bytes of data:

Request timed out.

…

Ping statistics for device-2:

…

3) Since there is no response from device 2, after 3 minutes

>> ping device-2

Pinging device-2 with 32 bytes of data:

Request timed out.

…

Ping statistics for device-2:

…

4) Immediately after the third failure, the Controller sends

When a new device joins the home network, it receives, from
the Controller, the shared public key and a group of keys with
randomly selected indexes from the key pool. They ensure the
home network’s public key is shared in a conversation between
two devices.

Step 6: Communication between two devices on the
home network

It checks to ensure that both devices are from the same home
network and that the public shared key for the home network is
equal. They fi nd a shared key to encrypt messages and securely
exchange information.

Step 7: Sending encrypted messages

When a device wants to communicate with another, it sends
an encrypted message using AES encryption. The encryption key
is the shared key. The receiving device decrypts the message using
the same key.

Own keywords dictionary method

We introduce the Own Keywords Dictionary method to mitigate
the risk of dictionary key attacks on an IoT device within the
local network. This could lead to key discovery and compromise
the network. This mechanism operates like the safeguarding
mechanism for password and shadow fi les in the UNIX system.
Access to the keyword fi le is restricted, mirroring the root’s
protection of critical system fi les (e.g., cat/keyword: Permission
denied). The keyword fi le comprises the following data:

• Device name - visible data

• Key index number - encrypted data (SHA256)

• Keys - Encrypted data (SHA256).

• Last key change time - visible data

• Key Expiration Time - Visible data

An example of the records in the keyword fi le (Figure 5).

Detecting missing devices method

To prevent a malicious opponent from “snatching” a device
and extracting the information required to hack the network, a
dedicated daemon in the Controller device checks all active devices.
The test will be performed as follows:

1) For each time frame (e.g., 20 minutes), the Controller sends
a ping to each IoT device and maintains a list of all those
who returned an answer (Reply from) and those who did
not (Request timed out).

2) Select those who did not return an answer from the list,
wait a time (e.g., 3 minutes), and send a ping again.

3) After three unanswered attempts, the Controller exchanges
keys for all IoT devices in the local network (Repeat steps
3 through 6).

TECHNOLOGY February 12, 2024 - Volume 2 Issue 2

DOI: 10.61927/igmin1492995-8067ISSN

088

new keys to all devices and sends a cancellation message on the
previous keys.

System implementation

1. Certifi cate authority method: Creating a certifi cate:
Before a device enters the network, it undergoes an “initial
installation,” during which a fi le is installed. This fi le
contains a unique encrypted code certifying the device’s
trustworthiness to enter the home network, defi ne itself
as a Controller or node, and communicate with other
devices. The certifi cate creation process occurs as follows:
An installer runs an installation fi le during the initial
installation on the device. At the end of the installation, a
fi le is saved in the device›s memory containing a unique
code of approximately 1600 characters. When the device
connects to the network, it is required to ensure the
existence of the certifi cate fi le. A daemon continuously runs
in the background to verify the fi le›s presence and integrity,
preventing hacking attempts. If the certifi cate fi le is not
found, the system identifi es an intruder, issues a warning,
and halts all processes on the device.

2. Reliability check: When the device is connected to the
network, a unique daemon operates in the background
to verify the certifi cate fi le’s correctness and existence. If
the fi le is incorrect or missing, the system deactivates the
device from the home network and encrypts and blocks the
key fi le to prevent hacking attempts.

3. Creating a shared public key for the home network:
The Controller generates a public key saved in the certifi cate
fi le. When a device connects to the network, the Controller
sends the shared public keys to the home network. When
two devices initiate a conversation, a check ensures that
both devices share the same home network’s public key.
Only then can the devices communicate and exchange
messages.

4. Creating and encrypting the key fi le: When a
Controller device connects to the network, it generates a
fi le of keys shared with the devices. Each device receives
a list to fi nd a shared key for encryption. After the fi le is
created, it is encrypted to protect its contents. Devices use
the shared key to encrypt messages passing through the

network. Implementing the Certifi cate Authority Method
establishes a robust framework for secure key management
and communication within the IoT network, safeguarding
against unauthorized access and potential attacks.

Own keywords dictionary method:

 Pseudo code for the key security mechanism

For every device:

• Get a list of key indices from the device interested in
communicating.

• Encrypt all indexes received and get a list of encrypted
index results.

Loop:

Compare the encryption result (of each index) to all results in
the “Index of Key” column

o If a match was found:

 Move to the “Keys” column in the same row, decrypt the
encryption result, and return it

o Otherwise:

Return “match was not found.”

end loop;

The root also protects this.

Detecting missing devices method: The following
Python code implements the “Detecting Missing Devices” Method
(Figure 6).

The new immune protocol

Following, we describe the protocol in further detail:

1) Preliminary step

• The local network administrator, as Certifi cate Authority,
must update a local certifi cate for each IoT device connected
to the network; without the certifi cate, the device will not
belong to the network under any conditions.

Device name
Index Index of

Keys
Not Part
of the file

Keys
Not Part of
the file

Salt SHA256(Index of
Key)

SHA256(Keys) Last key
change time

Key
Expiration
Time

1

107 123 1100110
01100

3346f2bbf6c34bd2dbe
28bd1bb657d0e9c3739
2a1d5ec9929e6a5df47
63ddc2d

fd2da12cc87478c1f
d503ce40b11e77160
9163eee279ba4db71
64c628ff6f2ee

18:00
01/01/22

18:00
01/02/22

2 1056 456 0000111
10000

e8c5e943ad4fd9d115c
2baacd110acddee7f66e
c24aa177efa6780f5641
ce277

92847366066d8b97
3414ccd211d932c25
5b37282e7428f2b43
067ed355eae72d

18:00
01/01/22

18:00
01/02/22

Figure 5: Th e structure of the keyword fi le.

TECHNOLOGY February 12, 2024 - Volume 2 Issue 2

DOI: 10.61927/igmin1492995-8067ISSN

089

to “Controller FOUND.” It broadcasts two messages: “I AM
the Controller” and “myCertifi cate.” If it receives an “IS
THERE Controller” message, it will send a private message
to that “I AM the Controller & myCertifi cate” device.

3) The Controller defi nes the key pool size

• The Controller calculates the number of keys it must
produce and the number of keys it must divide to each node
according to physical data such as memory size and the
number of nodes in the network. By using mathematical
calculations, conclude the size of the pool.

• The Controller generates a public key, which he saves in the
certifi cate fi le.

4) The Controller requests the manufacturing of
distributed keys

• The Controller sends “Controller NEEDS KEY &

• A daemon will run according to the certifi cate’s expiration
date, which will create a new certifi cate for each device,
make sure that the fi le exists, is a valid and reliable
certifi cate, and makes sure that the fi le exists, is a valid and
reliable certifi cate.

2) Determining the controller device as soon as an
IoT device enters the network, it broadcasts two messages on the
network: “IS THERE Controller & myCertifi cate” and waits for
some time for a response:

• If it receives an “I AM the Controller” message, it switches
to “Controller FOUND” and stops the search for the
Controller. From then on, it will only listen to messages
from the Controller (to get the keys and perform the rest of
the protocol stages) until a secure network is established.

• If it does not receive any answer (twice or there is a failure
in the network), it will declare itself a Controller and move

import time
import os

hostnames = [
 '10.40.161.2',
 '10.40.161.3',
 '10.40.161.4',
 '10.40.161.5',
]

For hostname in hostnames:
 time.sleep(1200)
 response = os.system('ping -c 1 ' + hostname)
 if response == 0:
 print(hostname, 'is UP')
 Else:
 time.sleep(180)
 response1 = os.system('ping -c 1 ' + hostname)
 if response1 != 0:
 time.sleep(180)
 response2 = os.system('ping -c 1 ' + hostname)
 if response2 != 0:
 print(hostname, 'is down, Controller sends new keys')
 Fernet(key)
 else:
 print(hostname, 'is UP')
 Else:
 print(hostname, 'is UP')

Figure 6: Python code for detecting missing devices.

TECHNOLOGY February 12, 2024 - Volume 2 Issue 2

DOI: 10.61927/igmin1492995-8067ISSN

090

myCertifi cate” to each node in the network about the
number of keys it must generate.

• The Controller generates a private and public RSA key
and sends its public key to each node in a “Controller
PUBLIC KEY” message. The safety of the proposed method
requires the transfer of secure data (for example by RSA)
between the devices because this data includes encryption/
decryption keys and certifi cate fi les.

5) Creation of distributed keys by each node in the
network

• Each node in the network creates keys, encrypts them with
a public RSA key (of the Controller), and sends them to the
Controller.

• The Controller accepts the generated keys from each node
and consolidates them into a key pool.

6) Distribution of keys

• Each client (IoT device) generates a private and public
RSA key and sends the public key to the Controller in a
CLIENT PUBLIC KEY & “myCertifi cate” messages so that
the Controller can encrypt the subset of keys it sends to the
client.

• The Controller raffl es k keys from the pool and sends the
client each key in the CLIENT RING KEYS message while
it is encrypted by the client’s public key with the index of
the key.

• Once all keys are sent, the Controller sends a CLIENT RING
END message, and the client switches to CLIENT GOT
KEYS and decrypts each key sent to it with its private key.

• A unique daemon starts to run in the background, and if the
fi le is incorrect or does not exist, the system will deactivate
this device from the home networking (to which it was
connected), encrypt, and block the key fi le against hacking.

7) Finding a shared key

• Each node that receives keys sends an “I AM ON THE
NETWORK & myCertifi cate” message so that the other
nodes on the network recognize it.

• When two devices start a conversation, a check is made that
verifi es that both devices have the same home network’s
public key,

• Node#1 will send a “verify certifi cate” message to node#2,
and node#2 will return a public key in response. Node#1
will check that the public key returned by Node#2 is the
same as the one it received from the Controller.

• When a node wants to exchange encrypted messages with
another node in the network, it sends a “CLIENT START
SESSION & myCertifi cate” message with its list of indexes
(of keys). The node that receives the message checks for
overlaps between its indexes and the indexes (of keys) it

received. If it fi nds a shared key (which will happen with a
probability of 80% - 90%), it sends the CLIENT COMMON
INDEX message with the shared key, and in the absence
of a shared key, it returns a message of -1. The two nodes
maintain the index of the key with which they will exchange
encrypted messages.

8) Secure network

• When a node (IoT device) wants to communicate with
another node, it sends a MESSAGE ENC DATA message in
which AES encrypts the information it wants to transmit,
and the encryption key is the shared key. The receiving
node decrypts with the same key.

• A new node that enters the network goes through the
protocol steps and can communicate securely with any
node on the network.

• When a node disconnects from the network, it does not
interfere with the communication between the other nodes,
nor does it reveal all the encryption keys.

9) Missing devices detected

• For each time frame (e.g., 20 minutes), the Controller sends
a ping to each IoT device and maintains a list of all those
who returned an answer (Reply from) and those who did
not (Request timed out).

• Selects from the list those who did not return an answer,
wait a time (e.g., 3 minutes), and send a ping again.

• After three unanswered attempts, the Controller exchanges
keys for all IoT devices in the local network (Repeat steps
3 through 6).

Experiment results

In this section, we demonstrate the operation of the innovative
protocol (appears in section 3) we developed in this research
with the new approaches to dealing with the vulnerabilities of the
previous protocol. We performed experiments in our laboratory
with 3 Raspberry Pi 3 Model devices (#1: 10.0.0.26, #2: 10.0.0.10,
#3: 10.0.0.5).

Step 1: Preliminary step as described in section 4, step 1.

Updating a local certifi cate for each IoT device by the network
manager, as follows (Figure 7).

Step 2: Determine who the Controller device is as
described in section 4, step 2.

This operation is done by device #1, which looks for the
Controller device on the network, sends a message in broadcast
with its certifi cate to other devices, and declares itself a Controller.
The other instruments would ignore this message if the device
were without a certifi cate (Figure 8).

Step 3: The Controller defi nes the key-pool size as described
in section 4, step 3.

TECHNOLOGY February 12, 2024 - Volume 2 Issue 2

DOI: 10.61927/igmin1492995-8067ISSN

091

Figure 7: Python code for updating a local certifi cate for each IoT device.

Figure 8: Python code results for determining who is the Controller device.

TECHNOLOGY February 12, 2024 - Volume 2 Issue 2

DOI: 10.61927/igmin1492995-8067ISSN

092

Now, Device #1 calculates the required pool of keys and the
number of keys each device will receive, ensuring an overlap of at
least one key between any two devices on this network with a 90%
probability. In our case (3 devices), a pool of 152 and 16 keys per
device is required (Figure 9).

Step 4: Controller requests manufacturing of distributed keys
as described in section 4, step 4.

Device #1 (the Controller) sends a message in broadcast for all
devices to generate keys (Figure 10).

Step 5: Create distributed keys by each node in the network as
described in section 4, step 5.

Each node in the network generates keys as required. These
keys are sent to the Controller encrypted with the Controller’s
public key (Figure 11).

Step 6: Distribution of keys as described in section 4,
step 6.

Each device generates a private and public RSA key and sends
the public key to the Controller with his certifi cate. The Controller
(#1) can now encrypt the subset of keys and send it to the other
devices (#2 and #3) (Figure 12).

Step 7 : Finding a shared key as described in section
4, step 7

Each node that receives keys sends an “I AM ON THE
NETWORK & myCertifi cate” message in the broadcast. When
another node wants to exchange encrypted messages, it sends
CLIENT START SESSION & myCertifi cate messages with its list of
indexes (of keys). Here, device #2 got a message from device #1 to
fi nd a shared key (148) (Figure 13).

Figure 9: Python code results for defi ning the key-pool size by the Controller device.

Figure 10: Python code results for distributing keys by the Controller device.

TECHNOLOGY February 12, 2024 - Volume 2 Issue 2

DOI: 10.61927/igmin1492995-8067ISSN

093

Figure 11: Python code results for the creation of distributed keys by each node.

ys d se d o e o e dev ces (# d #3). (gu e)

Figure 12: Python code results for generating a private and public RSA key.

TECHNOLOGY February 12, 2024 - Volume 2 Issue 2

DOI: 10.61927/igmin1492995-8067ISSN

094

Step 8: Secure network as described in section 4, step 8

Here, node #2 wants to communicate with node #3 (none of
them is the Controller), and the shared key between them is 42.
node #2 sends a MESSAGE ENC DATA message in which AES
encrypts the information it wants to transmit, and the encryption
key is the shared key. Node #3 decrypts with the same key (Figure
14).

Step 9: Detection of missing devices as described in section
4, step 8

To ensure that all devices in the network are alive, the Controller
(#1) sends a ping message every 20 minutes to each node (e.g., #3).
If there is no answer from a particular device, the current batch of
keys is canceled and immediately replaced (Figure 15).

Conclusion and future work

In conclusion, our endeavors to enhance the security of
IoT networks have led to signifi cant strides, building upon
the foundation laid in our previous work as mentioned
previously. The initial protocol addressed key construction and
distribution challenges for IoT devices with limited resources.
As a complementary extension, this paper introduces a fortifi ed
protocol designed to withstand potential cyberattacks.

Key upgrades

1) Device-specifi c certifi cates: We implemented unique
certifi cates for each IoT device, enhancing trust and preventing

unauthorized access to the network during the initial installation
phase.

2) Robust key dictionary security: Recognizing the
vulnerability of the key dictionary, we implemented stringent
security measures, restricting unauthorized access and fortifying
the encryption keys against potential breaches.

3) Swift key replacement mechanism: In response to
the disappearance of an IoT device, we introduced a mechanism
for immediate key replacement. This proactive measure ensures
continuous network security, mitigating the risk of compromised
keys.

Future work

While the enhancements show promise in controlled laboratory
conditions with three devices, future work involves expanding
the scope of testing to a larger scale. Real-world deployment and
evaluation will be pivotal in understanding the practicality and
eff ectiveness of the enhanced protocol in diverse IoT environments.
The following aspects will be explored in future work:

1) Large-scale testing: Rigorous testing on a larger scale
will provide insights into the protocol’s performance and resilience
under dynamic and extensive IoT deployments.

2) Real-world deployment: Practical implementation
of the enhanced protocol in real-world scenarios will be crucial
in validating its eff ectiveness and identifying any unforeseen
challenges.

Figure 13: Python code results for fi nding a shared key.

TECHNOLOGY February 12, 2024 - Volume 2 Issue 2

DOI: 10.61927/igmin1492995-8067ISSN

095

Figure 14: Python code results for communication between node #2 and node #3.

Figure 15: Python code results for detection of missing devices.

In summary, our enhanced protocol represents a crucial step
towards creating a robust and secure IoT ecosystem. Future
endeavors will focus on translating these advancements into
practical solutions, addressing the ever-evolving challenges in IoT
security.

References
1. Leshem G, David E, Domb M. Probability-Based Keys Sharing for IoT Security.

3) Dynamic IoT environments: Future work
will consider the adaptability of the protocol to various IoT
environments, ensuring its eff ectiveness in diverse and dynamic
settings.

4) Security audits: Continuous security audits and
assessments will be conducted to identify and address any
emerging threats or vulnerabilities in the evolving landscape of IoT
security.

TECHNOLOGY February 12, 2024 - Volume 2 Issue 2

DOI: 10.61927/igmin1492995-8067ISSN

096

ICSEE International Conference on the Science of Electrical Engineering.
2018.

2. Gubbi J, Buyya R, Marusic S, Palaniswami M. Internet of Th ings (IoT): A
vision, architectural elements, and future directions. Future Gener. Comput.
Syst. 2013; 29:1645–1660.

3. Sundmaeker H, Guillemin P, Friess P, Woelffl é S. Vision and challenges for
realizing the Internet of Th ings. In Cluster of European Research Projects on
the Internet of Th ings; European Commission: Brussels, Belgium. 2010; 3:
34–36.

4. Stellios I, Kotzanikolaou P, Psarakis M, Alcaraz C, Lopez J. A survey of IoT-
enabled cyberattacks: Assessing attack paths to critical infrastructures and
services. IEEE Commun. Surv. Tutor. 2018; 20:3453–3495.

5. Eschenauer L, Gligor VD. A key-management scheme for distributed
sensor networks. Proceedings of the 9th ACM conference on Computer and
communications security, Washington DC.11-2002; 341-47.

6. Alagheband MR, Aref MR. Dynamic and secure key management model for
hierarchical heterogeneous sensor networks. Iet Information Security [IF:
1.04]. DOI — 10.1049/iet-ifs.2012.0144, 2012

7. Sciancalepore S, Piro G, Boggia G, Bianchi G. Key Management Protocol with
Implicit Certifi cates for IoT systems. Proceedings of the 2015 Workshop on
IoT challenges in Mobile and Industrial Systems. Florence, Italy. ACM, NY,
USA. 2015; 37-42. ISBN: 978-1-4503-3502-7

How to cite this article: Leshem G, Domb M. Strengthening IoT Network Protocols: A Model Resilient Against Cyber Attacks. IgMin Res. Feb 12, 2024; 2(2): 084-096. IgMin ID: igmin149;
DOI: 10.61927/igmin149; Available at: www.igminresearch.com/articles/pdf/igmin149.pdf

8. Roman R, Alcaraz C, Lopez J. Key management systems for sensor networks in
the context of the Internet of Th ings. Nicolas Sklavos, Computers & Electrical
Engineering. 2011; 37:2; Pages 147-159.

9. Wazid M, Das AK, Odelu V. Design of Secure User Authenticated Key
Management Protocol for Generic IoT Networks. IEEE Internet of Th ings
Journal. 2018; 5:1; 269-282: ISSN: 2327-4662

10. Benslimane Y, BenAhmed K. Effi cient End-to-End Secure Key Management
Protocol for Internet of Th ings. International Journal of Electrical and
Computer Engineering (IJECE). 2017; 7:6; 3622 3631 ISSN: 2088-8708.

11. Mahmood Z, Ning H, Ghafoor A. A Polynomial Subset-Based Effi cient
Multiparty Key Management System for Lightweight Device Networks.
Sensors. 2017; 17(4): 670. doi:10.3390/s17040670

12. Mohammad M. Internet of Th ings: A Comprehensive Overview on Protocols,
Architectures, Technologies, Simulation Tools, and Future Directions.
Energies. 2023; 16.8:3465.

13. Gerodimos A, Maglaras L, Ferrag MA, Ayres N, Kantzavelou I. IoT:
Comm unication protocols and security threats. Internet Th ings Cyber-Phys.
Syst. 2023; 3: 1–13.

14. Domínguez-Bolaño T, Campos O, Barral V, Escudero CJ, García-Naya JA.
An overview of IoT architectures, technologies, and existing open-source
projects. Internet Th ings. 2022; 20:100626.

15. Python Own Certifi cate Authority (ownca). https://packagegalaxy.com/
python/ownca

