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Abstract

Th is study examined upper limb kinematics under simulated visually impaired conditions. By investigating how upper limb movements adapt in these 
circumstances, we aimed to gain insights that may prove valuable for both healthy populations and those with clinical conditions. Data, including 3D marker-based 
motion capture and accelerometer readings, were collected from seven healthy volunteers walking on a treadmill at 1.5 m/s under two conditions: without glasses 
(NG) and with stroboscopic glasses (G). Each walking condition lasted 2 minutes, and two 10-second recordings were analyzed from the midpoint of each session. 
Contrary to our hypothesis, simulated visual impairment with stroboscopic eyewear at 6Hz did not statistically aff ect upper limb kinematics, specifi cally in terms of 
wrist acceleration and hand distance in the frontal plane. Future research should explore varied visual impairment conditions, extend task durations, and investigate 
the relationship between subjective gait diffi  culties and biomechanical data.

Introduction

Human gait, a complex interplay of movements, is integral to daily 
functioning and relies on the coordination of various body segments. 
While research has traditionally emphasized the analysis of lower 
limb biomechanics, the role of upper limb movements, especially 
in challenging conditions (e.g. visual impairment, pregnancy) 
is increasingly recognized [1,2]. The upper limbs contribute 
signiϐicantly to maintaining balance, stability, and adaptive 
movements during gait [3]. Notably, understanding the intricate 
role of arm movements during gait is essential for a thorough 
comprehension of gait deviations, particularly in pathological gait. 
This signiϐicance is underscored by a substantial body of literature 
[4-9]. A review by Meyns, et al. [10] examined the intricacies of arm 
swings during human walking, concluding that arm movements serve 
a dual purpose: reducing the energetic cost of gait by approximately 
8% and facilitating leg movements. 

In central neurological pathologies like spinal cord injury, 
Parkinson’s disease, stroke, and Cerebral Palsy (CP), arm movements 
are frequently directly affected [11-15]. Despite this, the available 
descriptive data on upper limb movement during gait in clinical 
populations is limited. It has been shown that upper limb movements, 
including both arms and thorax movements, play a distinctive role 
for CP patients, varying based on the disease type, Hemiplegic (HE) 
or Diplegic (DI) [4,6]. CP patients adeptly use upper limb movements 
to compensate for physical impairments, either enhancing gait speed 
or mitigating altered movements on the affected side [6,10]. This 
underscores the importance of thoroughly investigating upper limb 
kinematics in populations with gait-related pathologies.

Building upon this recognition, our study sought to extend this 
understanding to healthy individuals walking under the paradigm 
of limited vision conditions. By investigating how upper limb 
movements adapt in these circumstances, we aim to gain insights 
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that may prove valuable for both healthy populations and those 
with clinical conditions, such as CP. This approach is intended not 
only to deepen our comprehension of walking mechanics but also to 
lay the groundwork for future research that could directly beneϐit 
rehabilitation strategies and assistive technology development in 
clinical populations.

To achieve our research objective, we employed 3D motion 
analysis, known for its precision in capturing intricate movement 
patterns [16-18]. The procedure involved placing markers on each 
wrist, combined with the integration of Inertial Measurement Unit 
(IMU) sensor data. The interplay between IMU and 3D gait data 
served as a crucial facet of our methodology, contributing valuable 
insights into the adaptations of upper limb kinematics during gait 
under simulated visual impairment conditions. Recent technological 
advancements have introduced various equipment in the ϐield of 
biomechanics, enabling the measurement of motion and inertial 
forces during human movement [19-27]. Among these, IMUs have 
emerged as a widely used technology, often employed in conjunction 
with magnetic ϐield sensors (MIMUs) [28-30]. IMUs, containing tri-
dimensional linear accelerometers, gyroscopes, and magnetometers, 
are wireless sensors with a working principle based on inertia [31-
33]. IMUs can function as standalone tools or be integrated into 
movement analysis systems, providing detailed linear and angular 
motion measures for individual segments, such as the head, thorax, 
and tibia [34-36]. The IMU sensor, placed on the wrist in our study, 
captured accelerations in three-dimensional space during the gait 
cycle. By synchronizing IMU data with the precise spatial tracking 
facilitated by the motion analysis, our methodology allowed a 
detailed investigation of the interrelationship between spatial 
and dynamic aspects of upper limb movements. This integrative 
approach offered insights into how acceleration patterns inϐluence 
the intricate adjustments in upper limb kinematics observed during 
gait under simulated visual impairment conditions. 

Moreover, the induction of visually impaired scenarios was 
achieved through the application of stroboscopic eyewear [37]. 
Stroboscopic scene illumination, using brief, intense light ϐlashes, 
uniquely challenges visual perception by creating the illusion of 
slowed or still objects [38]. This method offers valuable insights 
into how the brain processes rapidly changing stimuli, making it a 
versatile tool for studying motion perception and temporal aspects 
of visual processing [39]. The selection of stroboscopic illumination 
as the method to induce visual impairment was driven by its 
capability to replicate intermittent visual input, closely mirroring 
real-world situations involving limited vision [40]. Stroboscopic 
eyewear, characterized by its intermittent blackouts, poses a 
distinctive challenge to the visual system, compelling individuals to 
rely on proprioceptive and vestibular inputs [41,42]. While various 
methods for simulating visual impairment are available, the use of 
stroboscopic glasses offers the advantage of precise control over the 
timing and duration of visual disruption, establishing a standardized 
and reproducible experimental setup [37]. This speciϐic characteristic 
makes it an ideal tool for investigating upper limb kinematics in a 
controlled environment, as it directly disrupts the visual feedback 
loop during gait. 

Our hypothesis posited that, in the presence of impaired vision, 
there would be a statistically signiϐicant increase in the distance 

between upper limb markers and wrist acceleration during walking. 
This expectation is based on the understanding that individuals, when 
faced with visual impairment, might depend more extensively on 
upper limb movements to preserve balance and spatial orientation. 

Methodology

Participants

Data encompassing both 3D marker-based motion capture and 
accelerometer readings were collected from seven volunteers (ϐive 
males and two females, mean ± SD: age = 22.1 ± 1.7 years, height = 
175.0 ± 8.6 cm, mass = 78.5 ± 9.1 kg). All participants were healthy, 
moderately active physical education students, and free of any known 
neurological or musculoskeletal disorders that could affect gait and 
potentially impact the expected or collected data. All procedures 
were conducted according to the Declaration of Helsinki and were 
approved by the University of Thessaly ethics committee (protocol 
code 2166 and date of approval 5/4/2023).

Experimental procedure

Participants walked on a treadmill (Technogym, Italy) at 
a constant speed of 1.5 m/s. Each participant underwent a 
familiarization session to acclimate to the treadmill walking. The 
experiment was conducted under two conditions: walking without 
glasses (NG) and walking with stroboscopic glasses (Nike Vapor 
Strobe Eyewear®), set at a 6Hz frequency (G). Each walking condition 
lasted for two minutes, and two 10-second recordings were analyzed 
from the midpoint of each session.

Data collection

To capture detailed kinematic data, our study utilized 3D 
motion analysis. One reϐlective marker was placed on each wrist of 
the participants, facilitating precise tracking of hand movements. 
Additionally, an Inertial Measurement Unit (IMU) sensor was 
afϐixed to the right wrist of each participant to record acceleration 
data. This comprehensive setup was designed to provide an in-
depth understanding of upper limb movements, particularly under 
conditions simulating visual impairment.

Data capture was executed, as previously described [43-45], 
using a Vicon Motion Capture System (Vicon T-series, Oxford, UK), 
which comprised ten cameras operating at a sampling rate of 100 Hz. 
The accelerometer data were obtained at the same frequency using a 
custom-made prototype accelerometer, developed as part of the “CP-
WATCHER” research project under the call RESEARCH–CREATE–
INNOVATE (project code: T2EDK-00759). This accelerometer was 
speciϐically designed to yield high-precision readings pertinent to 
our study objectives.

The key variables of interest in our analysis were the hand 
distance in the frontal plane (HD) and the average peak Resultant 
Acceleration (RA) measured by the accelerometer. 

Results

The statistical analysis utilized IBM Statistics Software Package 
version 26 (IBM Corp., Armonk, NY). The normal distribution of 
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Figure 1: Distribution of average peak resultant acceleration (RA) and hand distance in the frontal plane (HD) between walking with stroboscopic glasses (G) and walking without glasses (NG).

on gait dynamics could be more signiϐicant or subtle in different 
individuals or under varying conditions [47,48].

The level of visual impairment introduced in our study, 
characterized by the use of stroboscopic eyewear, may not have 
been sufϐiciently challenging to provoke marked adaptive responses 
in healthy participants. This ϐinding highlights the need for future 
research to examine a broader spectrum of visual impairment 
intensities, potentially including more severe scenarios, to thoroughly 
assess their inϐluence on gait dynamics.

Several participants noted an increase in perceived difϐiculty 
towards the end of the 2-minute walking task. However, this reported 
increase in challenge was not reϐlected in the kinematic data, 
underscoring the complexities in correlating subjective experiences 
with objective biomechanical measurements. This discrepancy 
suggests that future studies might beneϐit from including longer 
walking durations or varied task complexities to better capture these 
subjective assessments.

Moreover, the study’s limitations include a small sample size and 
the speciϐicity of the visual impairment simulation. Further research 
with a larger and more diverse sample, along with varying degrees 
of visual impairment, is necessary to generalize these ϐindings. 
Additionally, exploring other aspects of upper limb kinematics 
and incorporating different walking speeds could provide a more 
comprehensive understanding of gait adaptations.

HD and RA parameters was assessed using a Shapiro–Wilk test, 
revealing a signiϐicant difference (p < 0.05) suggesting nonnormal 
distribution. A Mann-Whitney U test was used for statistical analysis. 
The signiϐicance level was set at p < 0.05.

As depicted in Figure 1, the Mann-Whitney U test revealed no 
signiϐicant difference in RA between the two conditions (U = 22.0, 
p = 0.5887). Similarly, no signiϐicant difference in HD in the frontal 
plane between conditions G and NG (U = 25, p =1.0).

Discussion

Contrary to our initial expectations, this study found that a 
visually impaired scenario, simulated using stroboscopic eyewear 
at a 6Hz frequency, did not notably affect upper limb kinematics, 
speciϐically in terms of wrist acceleration and hand distance in the 
frontal plane. This suggests that, within the scope of this experiment, 
healthy individuals might not signiϐicantly adjust their upper limb 
movements to maintain balance and orientation under mild visual 
impairment.

These results are in line with previous research, which suggests 
that the primary function of arm swing in human gait might not be 
directly related to enhancing stability. Instead, it could be more about 
aiding recovery movements, which contribute to overall gait stability 
[46]. However, the notable variability observed among individuals 
(Figure 2) in our study hints that the impact of visual impairment 

Figure 2: Example of subject 5 from our measurements, illustrates a trend of larger hand distance (HD) and higher acceleration (RA) under the visual impairment condition (G).
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It is worth noting that our ϐindings could have signiϐicant 
implications in clinical settings, particularly in the early detection 
of pathological conditions affecting gait kinematics. Wearable 
technology, such as smartwatch-embedded accelerometers, holds 
considerable promise in this regard [27,49]. Although our study did 
not detect these changes at a group level, reϐining methodologies and 
gathering larger datasets could enable the detection of changes at an 
individual level. This capability could be instrumental in assisting 
healthcare practitioners in identifying early stages of neurological 
conditions, potentially leading to timely interventions that could 
decelerate disease progression. This potential application highlights 
the increasing importance of incorporating advanced technology in 
clinical settings for proactive health management.

Conclusion

In conclusion, while our study sheds light on the effects of 
mild visual impairment on upper limb kinematics during gait, it 
also underscores the necessity for additional research. Future 
investigations should explore a wider range of visual impairment 
conditions, extend task durations, and delve into the relationship 
between subjective gait difϐiculties and objective biomechanical data. 
Such research could provide a more holistic understanding of gait 
adaptations and guide the development of specialized rehabilitation 
strategies and assistive technologies for various populations.
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