The Educational Role of Cinema in Physical Sciences

Maria Sagri, Denis Vavougios and Filippos Sofos*

Department of Physics, University of Thessaly, 35100 Lamia, Greece

*Correspondence: Filippos Sofos, Department of Physics, University of Thessaly, 35100 Lamia, Greece, Email: fsosos@uth.gr

INTRODUCTION

The educational experience in classrooms at all levels of education has shown that students generally believe that physics, as well as most science-related classes, are difficult to understand, and without particular application to daily life [1]. According to the research by the US National Science Foundation (NSF), there is a serious decline in understanding and interest in science among people of all ages in the United States [2]. For example, almost 50% of people don’t know that it takes the Earth one year to complete one orbit around the sun, or that electrons are smaller than atoms [3]. These examples of incorrect or incomplete understanding of the natural sciences extend beyond the various scientific disciplines, into concepts of everyday life and interaction with the world.

There are many scientific principles from the macro- or the micro- and sub-atomic world, that could be better illustrated by animated pictures, and movies have much to offer towards this direction [4]. It is a fact that many motion pictures refer to scientific subjects which may not be widely known to the majority of the public. Some approach them superficially, while others give stimuli to the viewer to properly understand a concept or phenomenon. Films dealing with the subject of physics are generally fictional films or dramatizations of real events. In some cases (such as science fiction) the subject matter may extend a bit beyond what we currently know about the world. In any case, the educational dimension of the films is there.

A movie is a cultural tool with multiple interpretations [5]. In educational inquiry, the learner discovers the answer to questions about the physical world, analog to the Socratic dialectic [6]. For example, in the movie “Speed 2” students calculate the impact force of a ship on the dock, while in “2001: A Space Odyssey”, students try to calculate the gravity conditions in space, inside the International Space Station. On the other hand, for students at the primary education level, it was found that knowledge was better achieved through performing experiments by the students, compared to the result obtained after watching educational documentaries with experiments in natural sciences [7].

Popular motion pictures may reflect ideas about science and technology, but they create perceptions of both the public and scientists in a mutual formation of science and culture. A scientist, as presented in the cinema, has oftentimes a negative, strange image. It is a fact that the character of a mad scientist may be the most recognizable movie scientist. In the work [8], six scientist stereotypes have been identified as the conquering movie characters: the alchemist/mad scientist, the professor, the inhuman rationalist, the heroic adventurer, the helpless scientist, and the social idealist. In a different view, depictions of scientists represent the public face of science, playing an important role in building younger students’ understanding of science and its role and the possibility that they will engage with it in the future [9].
Natural sciences approach

It is important to keep in mind that movies are not a substitute for formal education. Nevertheless, oftentimes they incorporate scientific concepts and could be used as supplemental educational material, as the visualization they offer could aid in diving deeper into science [10]. These cases need to be distinguished from cases of “pseudoscience” films, that is, when a phenomenon contradicts accepted scientific facts, and yet is deliberately presented as scientific. The movie The Sixth Sense suggests that ghosts, in addition to actually existing, are connected with a cold environment, although why this should be true is not clear. In a typical scene of the movie, the young hero goes to the bathroom during the night. The sharp drop in temperature at this point bodes for the appearance of a ghost [6].

It has been observed that scientists and filmmakers seem to have found a common pace in many cases in the past decades, having presented more and better scientific material either on cinema or on TV [11]. There are many characteristic film clips with hidden but also more obvious educational content. The scientific advisors of the films have an active role in the presentation of natural laws, directing the creators so that they accurately render natural phenomena and concepts [12]. Scientists and scientific organizations working on popular films need filmmakers to maintain the authenticity of scientific depictions. Filmmakers, on the other hand, need only ask scientists to help them maintain an acceptable level of verisimilitude, within the constraints of budget, time, and narrative.

During the past decades, there have been many films that tried to capture and promote scientific material to the public. A short list referring to the latest releases, from 2010-2023, is presented in Table 1. As shown here, questions such as the effect of artificial intelligence on mankind, the ethical impact of genetics, environmental issues, and space exploration are among the most frequently investigated topics. These are all controversial subjects, and it would be difficult for the non-specialized educator to cover all these issues in the class, especially for the younger students. On the other hand, there are many films in the list (e.g., Rampage) that may have some reference to science, but they are mainly sci-fi films, devoted to entertainment.

In the next Sections, some characteristic movies of all times with concepts from physics, mathematics, materials science, and other fields are further analyzed in detail.

Physics

In the Interstellar film (Figure 1), physicist Kip Thorne was actively involved as a scientific consultant. The approach to a black hole is relatively accurate, with the idea that time moves differently as we approach a black hole. However, the film has been criticized for presenting many odd elements in the development of the phenomenon that makes no scientific sense, casting doubt on its scientific validity overall [13].

In Figure 2, Shannon’s law of entropy is presented in the center shot, to emphasize the importance of information transmission (data source, communication channel, receiver), as the movie

Table 1: Popular films with scientific content from 2010-2023.

<table>
<thead>
<tr>
<th>Film</th>
<th>Scientific principle</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Social Network</td>
<td>Computer science, entrepreneurship</td>
<td>2010</td>
</tr>
<tr>
<td>Inception</td>
<td>Neuropsychology</td>
<td>2010</td>
</tr>
<tr>
<td>Contagion</td>
<td>Epidemiology, public health</td>
<td>2011</td>
</tr>
<tr>
<td>Moneyball</td>
<td>Statistics, data analysis</td>
<td>2011</td>
</tr>
<tr>
<td>Her</td>
<td>Artificial intelligence</td>
<td>2013</td>
</tr>
<tr>
<td>Ex Machina</td>
<td>Artificial intelligence</td>
<td>2014</td>
</tr>
<tr>
<td>The Imitation Game</td>
<td>Computer science</td>
<td>2014</td>
</tr>
<tr>
<td>The Theory of Everything</td>
<td>Theoretical physics</td>
<td>2014</td>
</tr>
<tr>
<td>Lucy</td>
<td>Neuropsychology</td>
<td>2014</td>
</tr>
<tr>
<td>The Man Who Knew Infinity</td>
<td>Mathematics</td>
<td>2015</td>
</tr>
<tr>
<td>Hidden Figures</td>
<td>Computer science/programming</td>
<td>2016</td>
</tr>
<tr>
<td>First Man</td>
<td>Space science, astrophysics</td>
<td>2018</td>
</tr>
<tr>
<td>A Wrinkle in Time</td>
<td>Theoretical physics</td>
<td>2018</td>
</tr>
<tr>
<td>Ready Player One</td>
<td>Technology, virtual reality</td>
<td>2018</td>
</tr>
<tr>
<td>The Meg</td>
<td>Marine biology</td>
<td>2018</td>
</tr>
<tr>
<td>Rampage</td>
<td>Genetics</td>
<td>2018</td>
</tr>
<tr>
<td>The Aeronauts</td>
<td>Environmental physics</td>
<td>2019</td>
</tr>
<tr>
<td>Gemini Man (2019)</td>
<td>Genetics</td>
<td>2019</td>
</tr>
<tr>
<td>Ad Astra</td>
<td>Space science</td>
<td>2019</td>
</tr>
<tr>
<td>Tenet</td>
<td>Theoretical physics</td>
<td>2020</td>
</tr>
<tr>
<td>The midnight sky</td>
<td>Space science, environmental science</td>
<td>2020</td>
</tr>
<tr>
<td>The Vast of Night</td>
<td>Astronomy</td>
<td>2020</td>
</tr>
<tr>
<td>Dune</td>
<td>Environmental science</td>
<td>2021</td>
</tr>
<tr>
<td>Voyagers</td>
<td>Space science</td>
<td>2021</td>
</tr>
<tr>
<td>Top Gun: Maverick</td>
<td>Physics in aviation</td>
<td>2022</td>
</tr>
<tr>
<td>Ant-Man and the Wasp:</td>
<td>Quantum physics</td>
<td>2023</td>
</tr>
<tr>
<td>Quantumania</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Scene from Interstellar (https://people.math.harvard.edu).

Figure 2: Scene from Arrival (https://people.math.harvard.edu).
Arrival approaches human communication with alien life forms. Moreover, the Schrödinger equation and Maxwell’s equations are also distinguished.

The TV series The Man Who Fell to Earth, a sequel to the 1976 film, dives deep into the world of cold fusion, introducing the viewer to a hot energy topic of our times, with global interest. Physicist Dr. Melanie Windridge has served as a scientific advisor to the script and production, ensuring that the physics of fusion was presented correctly, and bound to physical laws [14].

In another study [15], the scene of the movie Indiana Jones: Raiders of the Lost Ark with soldiers who melt due to radioactive radiation when they open the Ark is examined. If it is considered that the Ark was a lead-lined box, with a source of gamma-ray radiation inside it, the required radiation dose required to melt a human in 10 seconds is $H = 3.83 \times 10^7$ Sv, which gives the absorbed dose rate value of 2.29×10^8 Gy/min. These values are several orders of magnitude above the accepted radiation dose for humans, so the authors conclude that the effect is accurately attributed to the film.

In one of the episodes of the popular TV series Breaking Bad, the actors have to delete some sensitive information from a laptop located inside a police evidence room. By incorporating a suitable electromagnet, they attempt to erase the hard drive while being outside the building. While the approach has some kind of physical basis, the possibility of this being successful is unlikely, because the electromagnet would need more coils per unit length than its size would allow [16].

Mathematics

The connection of cinema with mathematics is perhaps the strongest among the sciences. The Mathematical Movie Database website [17] is dedicated to gathering mathematical references in movies and TV series, such as A Beautiful Mind and The Mirror Has Two Faces [18]. Such films, although not intended to teach mathematics, can foster classroom discussion, developing students’ critical outlook and life attitude.

In the movie Good Will Hunting, the main character is asked to solve a math problem with graphs. Figure 3(a) shows a typical example with four mathematical questions on the blackboard. In question (1) shown here, the constitution of the adjacency matrix is requested. The solution is shown in Figure 3(b). It is a fact that this particular film has been a field of study not only in the understanding of mathematics but also in the analysis of characters, a field that finds application even in the training of Education Consultants [19].

Materials science

The popular toy dog Slinky of the Toy Story film series, consists of a spring, whose constant can be calculated if one studies a typical scene of the film (Figure 4). Under the weight of two other characters, Woody and RC, Slinky expands by dx. In the work of [21] the total weight of the load on the Slinky is calculated as $B = 1180$ gr, while the displacement $dx = 175$ cm. Applying the spring equation $F = -kdx$, we find that the constant $k = 6$ Nm$^{-1}$, which proves that the spring is loose and easily displaced.

Other fields

Apart from science, a common practice in cinema is the narration and dramatization of historical events. The combination of real historical truth and fiction could be a stimulus for teaching history. The film tells the story with a beginning, middle, and end, leaving a moral message and (usually) a feeling of upliftment [22]. There are, however, cases where the viewer tends to consider the imaginary as real and does not know how to react, as in the case of the movie The Day After Tomorrow [23]. The role of the teacher is crucial in such cases, as the one who needs to direct the concepts presented and distinguish fiction from reality [24].

Some other examples include the presentation of the concepts of advertising and influencing public opinion through films [25] and foreign language teaching, where watching French films with appropriate guidance from teachers brought positive results to students’ understanding and written skills in French, both in everyday and specialized vocabulary [26].

CONCLUSION

Enriching and incrementally reforming science education – from teacher training to developing standards, to improving access for all – is a challenge that the education system should face nowadays. In science education, with the aid of films, either popular ones or more science-specific, educators can guide students.
on a different journey of knowledge discovery, stimulating their
observation and experimentation skills, imagination, curiosity,
and reasoning ability. The use of audio-visual tools in class can
capture the students’ attention more than the traditional approach
to the same subject. In conclusion, we can say that the use of audio-
visual tools as a teaching tool in natural sciences can lead to the
improvement of its quality.

If science has to keep pace with the needs of society, they must
both learn to communicate and interact closer, and education
is the primary arena in which this union becomes a reality. The
scientific community needs to promote a close relationship with
the filmmakers and realize its parallel, educational role. In the era of
rapid technological advancements, scientists may offer filmmakers
inspiration to deal with everyday subjects that stem from science,
even in controversial themes.

REFERENCES
1. Sagri M, Sofos F, Mouzaki D. Digital Storytelling, comics and new
 technologies in education: Review, research and perspectives.
2. Efthimiou CJ, Llewellyn RA. Cinema as a tool for science literacy
 physics/0404078
3. Collins A. toward a Design Science of Education. In E. Scanlon & T.
 O’Shea (Eds.), New Directions in Educational Technology. 1992; 15-22.
 https://doi.org/10.1007/978-3-642-77750-9_2
 effect on students’ thinking and motivation. Computers & Education.
5. Arroio A. Context Based Learning: A Role for Cinema in Science
6. Efthimiou CJ, Llewellyn RA. Cinema, Fermi problems and general
 org/10.1088/0031-9120/42/3/003
 Films on 8th Grade Students’ Views about Nature of Science. Educational
8. Haynes RD. From Faust to Strangelove: Representations of the
9. Schibeci R, Lee L. Portrayals of science and scientists, and ‘science
 for citizenship’. Research in Science & Technological Education. 2003;
10. Barak M, Dori Y.J. Enhancing undergraduate students’ chemistry
 understanding through project-based learning in an IT environment.
11. Stengler E. Beyond Teaching and Learning: Bringing Together
 Science and Society with and through Movies. In Hollywood
 doi.org/10.1021/bk-2013-1139.ch024
12. Kirby DA. Science Consultants, Fictional Films, and Scientific
 org/10.1177/03063127030332015
 https://www.thoughtco.com/great-realistic-physics-movies-2699222
 articles/3484/science-consultant-melanie-windridge-on-the-man-who-
 fell-to-earth
15. Butcher W, Topping N, Sisodia N, Haywood J. A5_2 Indiana Jones:
 psst/article/view/2061
 com/moviemath/
18. Beltrán-Pellicer P, Medina A, Quero M. Movies and TV Series
 Fragments in Mathematics: Epistemic Suitability of Instructional
 Designs. International Journal of Innovation in Science and
 sydney.edu.au/Cal/article/view/12126
19. Koch G, Dollarhide CT. Using a Popular Film in Counselor Education:
 Good Will Hunting as a Teaching Tool. Counselor Education and
 2000.tb01232.x
 harvard.edu/
21. Cox T, Fernandez KP, Mead L, Seagrave J. P5_7 Examining the
 1. https://journals.le.ac.uk/ojs1/index.php/psst/article/view/3702
22. Rosenstone RA. The Historical Film as Real History. Filmhistoria
 Does tomorrow ever come? Disaster narrative and public perceptions
 of climate change. Public Understanding of Science. 2006; 15(4): 435-
 457. https://doi.org/10.1177/096366250603796
24. Donnelly D. Using Feature Film in the Teaching of History: The
25. Poli A. Teaching and learning cinema and visual languages through
 economics-business studies and law in high school: An experimental
 interdisciplinary approach. World Journal on Educational Technology:
26. Jordan R. Integrating Francophone Cinema into the High School
 French Class. Studies in Teaching 2016 Research Digest, Winston-
 Salem, NC. 2016.

How to cite this article: Sagri M, Vavougios D, Sofos F. The Educational Role of Cinema in Physical Sciences. IgMin Res. Nov 29, 2023; 1(1): 094-097. IgMin ID: igmin121;
DOI: 10.61927/igmin121; Available at: www.igminresearch.com/articles/pdf/igmin121.pdf
INSTRUCTIONS FOR AUTHORS

IgMin Research | STEM, a Multidisciplinary Open Access Journal, welcomes original contributions from researchers in *Science*, *Technology*, *Engineering*, and *Medicine* (STEM). Submission guidelines are available at www.igminresearch.com, emphasizing adherence to ethical standards and comprehensive author guidelines. Manuscripts should be submitted online to submission@igminresearch.us.

For book and educational material reviews, send them to STEM, IgMin Research, at support@igminresearch.us. The Copyright Clearance Centre’s Rights link program manages article permission requests via the journal’s website (https://www.igminresearch.com). Inquiries about Rights link can be directed to info@igminresearchus or by calling +1 (860) 967-3839.

https://www.igminresearch.com/pages/publish-now/author-guidelines

WHY WITH US

IgMin Research | STEM employs a rigorous peer-review process, ensuring the publication of high-quality research spanning STEM disciplines. The journal offers a global platform for researchers to share groundbreaking findings, promoting scientific advancement.

JOURNAL INFORMATION

Journal Full Title: IgMin Research-STEM	A Multidisciplinary Open Access Journal	Regularity: Monthly
Journal NLM Abbreviation: IgMin Res	Review Type: Double Blind	
Journal Website Link: [https://www.igminresearch.com](http://www.igminresearch.com)	Publication Time: 14 Days	
Category: Multidisciplinary	GoogleScholar: [https://www.igminresearch.com/gs](http://www.igminresearch.com/gs)	
Subject Areas: *Science*, *Technology*, *Engineering*, and *Medicine*	Plagiarism software: iThenticate	
Topics Summation: 173	Language: English	
Organized by: IgMin Publications Inc.	Collecting capability: Worldwide	

APC

In addressing Article Processing Charges (APCs), IgMin Research: STEM recognizes their significance in facilitating open access and global collaboration. The APC structure is designed for affordability and transparency, reflecting the commitment to breaking financial barriers and making scientific research accessible to all.

IgMin Research - STEM | A Multidisciplinary Open Access Journal fosters cross-disciplinary communication and collaboration, aiming to address global challenges. Authors gain increased exposure and readership, connecting with researchers from various disciplines. The commitment to open access ensures global availability of published research. Join *IgMin Research - STEM* at the forefront of scientific progress.

https://www.igminresearch.com/pages/publish-now/apc

License: Open Access by *IgMin Research* is licensed under a Creative Commons Attribution 4.0 International License. Based on a work at *IgMin Publications Inc*.

Online Manuscript Submission:
[https://www.igminresearch.com/submission](http://www.igminresearch.com/submission) or can be mailed to submission@igminresearch.us